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Summary 
 
This chapter describes how artificial neural networks (ANN) can be used for the 
identification of nonlinear dynamic systems. Some static artificial neural networks like 
multi-layer perceptrons, radial-basis function networks and local model networks are 
treated briefly. A short description of some continuous as well as discrete-time dynamic 
networks is also given.  
 
Training techniques associated with each network for the optimization of structure of 
the network and parameter estimation are also listed. Different identification approaches 
based on static as well as dynamic networks reported in the literature dealing with the 
identification of discrete and continuous-time systems using input-output as well as 
state-space models are summarized. Some practical issues related to neural 
identification are also discussed. A bibliography is included for an in-depth study of the 
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subjects presented here.  
 
1. Introduction 
 
Research in the field of artificial neural networks (ANN) is inspired by the biological 
nervous systems. Artificial neural networks are composed of simple elements, known as 
artificial neurons, operating in parallel. As in nature, the network function is determined 
largely by the connections between these elements. These connections are known as 
synapses. A neural network can be trained to perform a particular function by adjusting 
the synaptic weights between its elements.  
 
Commonly, synaptic weights of neural networks are adjusted, or trained, so that a 
particular input leads to a specific target output. Mostly, a network is adjusted, based on 
a comparison of the output and the target, until the network output matches the target. 
Typically many such input-target pairs are used to train a network.  
 
Neural networks are characterized by their inherent nonlinearity, capability to learn, 
universal approximation property, parallel processing and modular structure. Typical 
applications of neural networks include pattern recognition, classification, function 
approximation, system identification, speech recognition, vision and control.  
 
In late nineteen eighties the research interest in the capabilities of artificial neural 
networks as approximators of arbitrary continuous functions was put into focus. This 
was the time when artificial neural networks found another interesting area of 
application, the nonlinear system identification (see Identification of Nonlinear 
Systems). This interest reached its climax in mid 1990s. The earlier concepts used multi-
layer perceptron (MLP) networks for identification tasks. In the meantime researchers 
began to use radial-basis functions (RBF) to construct neural networks.  
 
Due to the linear-in-parameter property of the output layer, RBF networks attracted the 
attention of people working on approximation and system identification. MLP and RBF 
networks have proven themselves good means for nonlinear system identification. The 
major drawback of such black-box models is that the network parameters have no direct 
correspondence to the physical system parameters.  
 
If the parameters of a linearized model of the system at current point of operation or the 
gradient of some objective function are to be calculated, then the gradient of this neural 
model has to be calculated. This calculation is computationally expensive.  
 
Moreover, the presence of over- or under-fitting ripples in RBF or MLP network-based 
approximations may lead to erroneous gradient calculations. In the past ten years much 
attention has been given to the application of another type of networks, known as local 
model networks (LMN), to system identification.  
 
The most popular form of these networks uses local linear models (LLM). The local 
model networks decompose the input space of the nonlinear mapping into different local 
regions and estimate a linear model for each region.  
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If the number of regions is sufficiently large and the operating regions overlap properly 
then any nonlinear mapping can be approximated smoothly. This smoothness of 
approximation is necessary if a model-based controller is to be designed, or the model 
gradients are required for some optimization purposes.  
 
Another major advantage of such networks is the exploitation of linear design 
techniques while devising corresponding controller networks. One can find in the 
literature some identification approaches based on other types of neural networks like 
Cerebellar Model Arithmetic Computer (CMAC) and B-spline networks.  
 
All the networks described above do not contain internal dynamics. In order to use these 
networks for the identification of nonlinear dynamic systems external dynamic elements 
are necessary. The networks having internal dynamics like dynamic multi-layer 
perceptrons and recurrent networks, have also been tried for identification purposes. But 
due to their internal dynamics, stability problems must be considered.  
 
Training of these networks normally possesses relatively poor convergence properties 
when compared with static networks. Research in the field of neural identification has 
been focused mainly on estimating discrete-time nonlinear input-output models. Such 
models are described by nonlinear difference equations.  
 
A little attention was given to the identification of nonlinear state-space models. Neural 
identification of nonlinear continuous-time models is also under-represented in the 
literature. See General Models of Dynamic Systems for description of these models.  
 
This chapter describes some application possibilities of neural networks in nonlinear 
system identification. As there is no chapter in the whole theme dedicated to the 
introduction of artificial neural networks, the next section is devoted for a brief 
introduction of some network paradigms and their learning algorithms. Static as well as 
dynamic networks are introduced in this section.  
 
As the objective is system identification, the neural paradigms are described from the 
approximation point of view. Section 3 describes how these neural networks can be 
applied to the identification of nonlinear dynamic systems. Different approaches for the 
identification of discrete as well as continuous-time models are presented.  
 
2. Artificial Neural Networks 
 
A neuron is the smallest information processing unit in a neural network. A simple 
model of an artificial neuron is given in Figure 1. Variables 1 2, ,..., ru u u stand for the 
inputs to the neuron and y represents its output. All the inputs multiplied by their 
respective synaptic weights 1 2, ,..., rw w w are summed up in the summing junction.  
 
A bias term b is subtracted from this weighted sum to determine the internal activity 
a of the neuron. The output y is a nonlinear function of the internal activity and can be 
given as  
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Figure 1: A simple model of an artificial neuron 
 
The function f is known as the activation or squashing function, which maps the 
internal activity a to a closed interval [0,1] or alternatively[ 1,1]− . There are several 
types of this function reported in the literature, e.g. threshold functions, saturated linear 
functions and sigmoid functions.  
 
These functions are described in Table 1. Neurons with threshold functions are binary 
processing units and are useful for classification and decision tasks. For the 
identification purposes, where a smooth approximation of a nonlinear function is 
desired, sigmoid functions are preferred.  
 
Another advantage of the sigmoid functions is that these functions are differentiable, 
which is a requirement when gradient-based learning techniques are to be applied to 
train the neural network.  
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Table 1: Some examples of activation functions 
 
A neural network is composed of a small or large number of neurons which are coupled 
with each other. In general these neurons are arranged in different layers. Neural 
networks consisting of more than one layer are termed as multi-layer networks. 
 
 Based on the different possibilities of neuron interconnections the networks can be 
categorized as static or dynamic networks.  
 
Before a network can perform the desired task, it should be trained. Training is 
performed by feeding the network with a set of data patterns and adjusting its synaptic 
weights in order to achieve a desired response to input data. The algorithms used to train 
the networks are known as learning algorithms.  
 
A learning algorithm is a set of rules, which are applied during the training phase to 
adjust the parameters of the neural network in order to perform better.  
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