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Summary   
  
The problem of parameter estimation for nonlinear state-space models is addressed. 
Two approaches to this problem are presented: (1) the state-augmentation approach, 
which consists of including the unknown system parameters in the state vector and 
estimating them through a state estimator, and (2) the prediction-error approach, which 
consists of tuning a predictor such that it will give optimal predictions and then 
recovering the system parameters from this optimum predictor.  
 
For the development of both approaches, the concepts of state-space modeling and state 
estimation through filters are reviewed. This includes a unified formulation of four 
nonlinear filters: the extended Kalman filter, the first-order bias-corrected filter, the 
truncated second-order filter, and the modified Gaussian second-order filter. A 
discussion of the prediction-error approach stresses the fact that a prediction-error 
approach combines a predictor and an optimization algorithm with a sensitivity model 
for the predictor. For the unified filter formulation, such a sensitivity model is derived. 
The relationship between the two approaches as well as possible modifications and 
simplifications are discussed.  

  
1. Introduction and Overview   
  
The relevance of the system identification/parameter estimation problem for nonlinear 
systems has been discussed in the introduction to this topic (see Identification of 
Nonlinear Systems). Many of the identification methods discussed in Identification of 
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Nonlinear Systems focus on black-box models, i.e., models that do not have any direct 
relationship to the underlying scientific principles governing the behavior of the system 
(see Identification of NARMAX and related models, System Identification using Neural 
Networks, System identification using Fuzzy Models, and System Identification using 
Wavelets).  
 
A black-box model is often sufficient, particularly if the focus is on control design and 
simulation only, or if the system is to complex to be modeled from underlying first-
principles. If, however, the focus is on obtaining physical insight, determining the 
values of meaningful system parameters, or on monitoring the state of a process, a 
model derived from the underlying principles has to be used.  
 
Often, such a model is given in form of differential equations (see System Description in 
Time-Domain), either in input-output form (incorporating higher derivatives of input 
and output signals), or in state-space form (as a set of first-order differential equations). 
The state-space form is especially attractive since the states of a system are often related 
to physical quantities, such as signals that correspond to stored energy (e.g., the voltage 
over a capacitor, the current through an inductor, displacement of a spring, velocity of a 
mass, etc.)  
  
The estimation of parameters for input-output descriptions, i.e., differential equations, is 
discussed in the article preceding this one (see Parameter Estimation for Differential 
Equations). The present article addresses the problem of parameter estimation for 
nonlinear state-space models. It will become clear in this article that the algorithms 
employed for the identification of state-space models are quite complex compared to 
some of the black-box input-output models discussed in other articles within this section 
of EOLSS.  
 
Therefore, the algorithms should only be employed if it is really necessary to obtain 
estimates of parameters that correspond to meaningful parameters in the original 
differential equations, i.e., if it is necessary to work with a so-called gray-box. If this is 
the case, black-box models employed for two reasons. First, the gray-box parameters 
cannot be recovered form the black-box. Second, most black-box parameter estimation 
methods require discrete-time models, and for nonlinear models it is not possible to 
obtain exact discrete-time equivalents. In any case, the relationship between the 
parameters of the discrete-time model and the continuous-time model will be quite 
complex.  
  
The article is organized as follows. A few mathematical preliminaries are introduced in 
Section 2. A general approach to the parameter estimation problem, the recursive 
prediction-error approach, is reviewed in Section 3 (the prediction-error method is 
discussed in greater detail in Prediction error method). It is shown that a prediction-
error algorithm encompasses three parts: a predictor, an optimization algorithm, and a 
sensitivity model. The most popular optimization algorithm for parameter estimation, 
the recursive Gauss-Newton method, is presented in Section 3. Section 4 reviews the 
concept of state-space modeling and introduces state-estimation algorithms for 
nonlinear state-space models.  These state estimators can easily be modified to also 
estimate unknown system parameters through the state-augmentation approach, which is 
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discussed in Subsection 5.1. They can also be used as predictors in a prediction-error 
method. In this case, sensitivity models are required, which are derived in Subsection 
5.2. Some remarks regarding the relationship between these two methods and possible 
simplifications are given in Subsection 5.3. The conclusion follows in Section 6.  
  
2. Mathematical Preliminaries  
  
In this article, derivative operations are applied to matrix-vector equations. This section, 
therefore, clarifies what is understood by these derivative operations. Furthermore, 
auxiliary quantities that arise in these derivations are defined.  

The nr by ms derivative of the n by m function   with respect to its r by s matrix 
argument M is formally defined as the Kronecker product of the r by s “matrix 
derivative operator” and the matrix function A, that is,  
  

 .   
  
All other derivatives follow as simplifications of this general definition. For column 

vectors y (or scalars y) the term gradient is used for the expression  .  
  
For implicit (matrix) functions, the concept of a partial derivative is defined according 
to  
  

 (2.2)  
  
The total derivative is then obtained from partial derivatives through the (matrix) chain 
rule as  
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 (2.3)  
  
where two stacking operations are used: the “col” operator stacks a matrix columnwise 
into a column vector, and the “row” operator stacks a matrix rowwise into a row vector.  
The Kronecker permutation matrix is given as   
  

 (2.4)  
 
where  stands for a k by l matrix with a one in the i, j position and zeroes everywhere 

else.  
  
3. The Prediction-Error Approach to Parameter Estimation  

  
The prediction-error approach is a very general concept for the parameter estimation 
problem. A large number of time-domain parameter estimation methods can be 
interpreted as prediction-error algorithms. Even though the prediction-error method is 
discussed in detail elsewhere in this encyclopedia (see Prediction error method), its 
basic principles are reviewed here.  
  
The prediction-error approach starts with the formulation of a predictor for a dynamical 
model. A predictor is a dynamical model that generates a prediction of the future output 
of a system from the knowledge of past inputs and outputs (and, in some case, statistical 
properties of other signals acting upon the system). Depending on the model structure, 
i.e., the mathematical equations used to represent dynamic behavior of the model, 
different predictors arise. The prediction of the system output y at time  is often written 

as  , where " stresses the fact that it is an estimate and the   
notation indicates that it is an estimate of the output at time  using all information 

available up to and including time  . An alternative notation, which is used in this 
article, is , where  denotes that the estimate has been computed from knowledge of all 
values up to but not including . In other words, the prediction for the output at time  has 
been computed without knowledge of the actual true output (which is exactly what 

makes it a prediction). The terms at   are sometimes referred to as a 

priori estimates, whereas the quantities at   are called a posteriori values. The 

superscript  is dropped when it is clear that   is a prediction. If the model for a 
dynamical system is known, a predictor can be constructed. The predictor then also 
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depends on the parameters of the system. If the system parameters are unknown, a 
predictor can be constructed in which these system parameters are adjustable values. 
The prediction-error method consists of using such a parameterized predictor and 
adjusting the parameters until the predictor is “optimal,” i.e., it gives the “best” 
prediction of future system outputs.  
  
In order to judge this optimality, a cost functional has to be introduced. In most cases, 
the least-squares cost functional, i.e., a weighted sum of squared prediction errors is 
used, which is given as   
  

 (3.1)  
  
where e is the prediction error, i.e., the difference between the true output and its 
prediction    

 (3.2)  
  
and A is a weighting matrix. Often, A is the covariance matrix of the prediction errors, 
which is sometimes also provided by the predictor. In equations (3.1) and (3.2), the 
dependence on the system parameter vector p has been included. Cost functionals other 
than the weighted sum of squared errors (or the log-likelihood function given below) are 
also possible and are sometime employed to reduce the sensitivity to outliers. Often, 
errors that fall outside specified boundaries, i.e., large errors (outliers) are weighted 
linearly instead of quadratic, or constant costs are associated to these errors. These 
concepts stem from robust statistics. Modifying the cost functional does, however, 
complicate the development of the optimization algorithm.  
  
The estimation of the unknown parameter vector p can be carried out by minimizing the 
cost functional J. This can be done using any optimization method, but since the cost 
functional is quadratic, the Gauss-Newton method is a popular choice. This requires the 
gradient of the cost functional, which is given as  
  

 (3.3)  
  
or, substituting equation (3.2), as   
  

 (3.4)  
  
It is thus clear that the prediction-error method requires both the prediction and the 
gradient of the prediction. This is required to adjust the parameter vector in the direction 
of the negative gradient, i.e., in a direction that reduces the prediction errors. The 
algorithm that gives this gradient is called the sensitivity model of the predictor, since it 
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describes the changes in the prediction for infinitesimally small parameter changes.  
  
In the case of offline identification, the parameter estimation would be carried out in a 
two-step procedure: (1) with the current parameter estimates, the predictions (and the 
prediction errors) are generated and the gradient of the cost functional is computed (this 
is a simulation step), and (2) an improved parameter estimate is obtained through an 
optimization method (optimization step). These steps are repeated until the parameter 
estimates have converged.  
 
Often, however, the parameters are estimated in real time, i.e., during the operation of 
the system (online identification, see Recursive algorithms). In this case, the parameter 
estimate is corrected after each new measurement becomes available, i.e., in a recursive 
fashion. Usually, a recursive algorithm is derived from the non-recursive variant under 
the assumption that the previous parameter estimate was optimal, i.e., made the gradient 
of the cost functional zero. The gradient is thus approximated as   
 

 (3.5)  
 
The most widely used recursive estimation algorithm, the recursive Gauss-Newton 
algorithm for a least-squares cost functional, is given in Table 1. As mentioned above, 
this algorithm requires the prediction error and the gradient of the prediction as 
“external inputs”. The former is generated by the predictor, whereas the latter is 
obtained from the sensitivity model.     
  
Instead of the least-squares cost functional, a maximum-likelihood cost functional can 
also be employed. Based on the assumption that the prediction errors are normally 
distributed (which, at best, holds approximately for nonlinear systems), the negative 
log-likelihood function is given as  
  

 (3.6)  
  
Here, both the prediction errors e and their covariance matrix A depend on the 
parameter vector. The gradient of this cost functional can be computed but becomes 
considerably more complex than the gradient of the least-squares cost functional. For 
this reason, the least-squares cost functional is usually preferred.  
  

Weighting 
matrix (3.7) 

Gain 
matrix (3.8) 
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Parameter 
update  

(3.9) 

Covarianc
e update (3.10) 

Initial 
values Initial parameter estimate ; often set to zero. 

Initial covariance matrix; usual choice 

. 

 

 
Table 1 Recursive Gauss-Newton algorithm for a quadratic cost functional  

 
The prediction-error methods thus consists of a predictor (that gives the output 
prediction  and possibly the prediction error covariance matrix A), a sensitivity model 
(that gives the gradient of the prediction error and possibly the gradient of its error 
covariance matrix A), and an optimization algorithm (that governs how the parameter 
estimates are corrected, usually the Gauss-Newton algorithm of Table 1). The 
prediction-error method is thus, at least in principle, applicable to any system for which 
a mathematical model is available and for which a predictor (and a sensitivity model) 
can be formulated. This applies both to linear and nonlinear models as well as to 
continuous-time and discrete-time models.  
 
- 
- 
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