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Summary 
 
This article reviews techniques to identify the frequency domain properties of linear and 
nonlinear systems from measured physical input/output data. Practical spectral analysis 
procedures are discussed that are valid with random data to predict the frequency 
response functions in single-input/single-output (SI/SO) linear models and in multiple-
input/single-output (MI/SO) linear models. Special procedures are discussed for five 
types of nonlinear system model: Volterra nonlinear models, Hammerstein nonlinear 
models, Wiener nonlinear models, SI/SO nonlinear models, and models with nonlinear 
feedback.  
 
Formulas to identify Volterra nonlinear models are very complicated to apply and 
difficult to interpret. Formulas to identify Hammerstein and Wiener nonlinear models 
are limited in scope because of an assumption of Gaussian input data and restrictions on 
zero-memory nonlinear operations. Formulas to identify SI/SO nonlinear models are 
valid for data with arbitrary probability and spectral properties, and with arbitrary zero-
memory nonlinear operations.  
 
These results are simple to apply and interpret for wide classes of nonlinear system 
problems because the SI/SO nonlinear models can be replaced by equivalent MI/SO 
linear models. Practical direct MI/SO techniques can be used to solve the SI/SO 
nonlinear models, and practical reverse MI/SO techniques can be used to solve models 
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with nonlinear feedback. 
 
1. Introduction 
 
This article is concerned with the identification of frequency domain properties in linear 
and nonlinear systems using measured physical input/output random data. Two main 
properties distinguish nonlinear systems from linear systems. First, nonlinear systems 
do not satisfy the additive and homogeneous properties of linear systems. Second, the 
passage of Gaussian input data through nonlinear systems produces non-Gaussian 
output data. A general spectral analysis technique exists to identify the frequency 
response functions in linear systems. No general technique exists that applies to all 
nonlinear systems. Instead, special techniques are required for particular types of 
nonlinear system model that can occur. This article reviews techniques for five types of 
nonlinear system model deemed to be important in many engineering and scientific 
applications. 
 
The first three types of nonlinear model are Volterra, Hammerstein, and Wiener 
nonlinear models. Formulas to identify the frequency properties in Volterra nonlinear 
models are known only for Gaussian input data, and require the computation of 
multidimensional frequency response and spectral density functions. Formulas to 
identify the frequency properties in Hammerstein and Wiener nonlinear models are 
based on time domain iterative techniques that usually assume Gaussian input data and 
restrict the results to zero-memory nonlinear systems that are polynomials with constant 
coefficients. 
 
The last two types of nonlinear model are SI/SO nonlinear models that can be solved by 
direct MI/SO techniques, and models with nonlinear feedback that can be solved by 
reverse MI/SO techniques. These practical techniques are very broad in scope because: 
 

•  the input and output data can have arbitrary probability and spectral 
properties, 

•  the zero-memory nonlinear systems are not restricted in form, and 
•  standard programs exist that include coherence functions and error analysis 

criteria to evaluate the results. 
 
2. Linear System Identification 
 
A fundamental understanding is required on how to compute and apply spectral density 
functions from measured data to identify the frequency response functions in SI/SO 
linear models and in MI/SO linear models. Knowledge of these linear techniques is 
essential in solving the SI/SO nonlinear models in Section 3.3, and the models with 
nonlinear feedback in Section 3.4. 
 
2.1. SI/SO Linear Models 
 
The main SI/SO linear model of concern in this article is pictured in Figure 1 for the 
case of a SI/SO linear model with output noise. This model, as well as other less 
important types of SI/SO linear model that might be of interest for special applications, 
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are discussed in much detail in the relevant titles cited in the Bibliography.  
 

 
 

Figure 1. SI/SO linear model with output noise 
 
In Figure 1, the terms are: 
 

( ) measured inputx t =  
( ) measured total output ( ) ( )y t v t n t= = +  
( ) unmeasured linear system outputv t =  
( ) unmeasured output noisen t =  
( ) linear system frequency response functionH f =  

 
The optimum linear system frequency response function for Figure 1 is defined as the 
frequency response function that minimizes the spectral density function of the output 
noise. It is computed by the cross-spectral density function between the input and output 
records ( )xyG f , divided by the autospectral density function of the input record 

( )xxG f , namely: 
 

( ) [ ( ) / ( )]xy xxH f G f G f=  . 
 
This simple, practical spectral analysis formula applies to general SI/SO linear models 
with output noise where the measured physical input/output data can have arbitrary 
probability and spectral properties.  
 
The output noise ( )n t  in Figure 1 and in succeeding models represents all possible 
deviations from the model, including any unspecified nonlinear effects. With the 
optimum linear system, the computed output records ( )v t  and ( )n t  are automatically 
uncorrelated. 
 
2.2. MI/SO Linear Models 
 
A typical MI/SO linear model of concern in this article is pictured in Figure 2 for the 
case of a three-input/single-output linear model with output noise. A general MI/SO 
linear model with output noise can have an arbitrary number of input records. 
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Figure 2. MI/SO linear model with output noise 
 
In Figure 2, the terms are: 
 

1 2 3

1 2 3

1 2 3

( ), ( ), ( ) measured or computed inputs
( ) measured total output ( ) ( )
( ) ( ) ( ) ( ) sum of linear system outputs
( ) unmeasured output noise

( ), ( ), ( ) linear system frequenc

x t x t x t
y t v t n t
v t v t v t v t
n t

H f H f H f

=

= = +
= + + =

=
= y response functions

 

 
The key to identifying the set of optimum linear systems in Figure 2 is to change by 
data processing the generally correlated set of three input records into an equivalent set 
of three mutually uncorrelated input records. This converts the problem in Figure 2 into 
three separate SI/SO linear models that can be solved separately as per the spectral 
formula for Figure 1. Recommended practical steps to perform this work for general 
MI/SO linear models are discussed fully and applied to many problems in literature. 
Available standard programs to solve Figure 2 proceed as follows: 
 

1. The first step is to compute a new set of mutually uncorrelated input 
records from the original input records using conditioned spectral 
density functions and the simple SI/SO spectral analysis approach in 
Section 2.1. 

2. To produce the same total output record ( )y t  and the same output noise 
( )n t , if the mutually uncorrelated input records and the original input 

records are different, then these mutually uncorrelated input records 
must pass through a different set of linear systems { ( )}iL f  instead of 
the previous set of linear systems { ( )}iH f  shown in Figure 2. 

3. Apply the simple SI/SO spectral analysis formula in Section 2.1 to 
identify the optimum linear system { ( )}iL f  between each of the 
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uncorrelated input records and the total output record ( )y t . 
4. The set of optimum linear systems { ( )}iH f  between each of the 

original input records and the total measured output record ( )y t  can 
now be computed from the { ( )}iL f  systems by straightforward 
algebraic equations. 

 
Note that this practical procedure applies to general MI/SO linear system problems 
where the measured physical input/output random data can have arbitrary probability 
and spectral properties. As shown in the next section, this same approach can be used to 
identify the frequency properties in a large class of SI/SO nonlinear models. 
 
3. Nonlinear System Identification 
 
Frequency domain techniques to identify five types of nonlinear system models will 
now be discussed. These five types are: 
 

1. Volterra nonlinear models 
2. Hammerstein nonlinear models 
3. Wiener nonlinear models 
4. SI/SO nonlinear models 
5. Models with nonlinear feedback. 

 
- 
- 
- 
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