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Summary 
 
An algorithm for parameter identification in continuous time is presented. This 
methodology is designed for nonlinear uncertain systems with partial measurement of 
the state vector. Non-measurable states are restored through an observer, designed using 
variable structure theory. Regarding the specific properties of the latter theory used for 
the design of the observer (convergence in a finite time, invariance and chattering 
properties), it is possible to design simultaneously a parameter estimation law, which 
converges asymptotically to the nominal values of the parameters. Some simulation 
results highlighting the robustness in face of parameter uncertainties and measurement 
noise illustrate the use of the identification algorithm. 
 
1. Introduction 
 
This chapter investigates the issue of simultaneous identification of the vector state and 
parameter values of nonlinear systems. Parameter estimation in the linear context is 
widely applied, especially in industrial plants. The most famous method for linear 
identification is based on the least squares algorithm, (see Least squares and 
instrumental variable methods). Unfortunately, most of the plants encountered in 
practice belong to nonlinear systems, which can only be adequately described by 
nonlinear models. Therefore several recent studies focus on the identification of 
nonlinear plants but this area has not yet received a huge exposure. This is probably due 
to the difficulty of designing identification algorithms that could be applied to a 
reasonably large class of nonlinear systems. One possible solution to nonlinear 
identification consists to use again the least squares algorithm methods. However, this 
implies a linearization around some equilibrium point which restricts a lot the range of 
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the study. Moreover, other techniques for nonlinear identification have already been 
investigated such as Volterra-series approach, (see Volterra and Fliess series 
expansions) or the method of maximum-likelihood, (see Practical issues of system 
identification). Nevertheless, both of the previous methods are designed for specific 
nonlinear systems and are assuming that all the vector state is measurable, which 
sometimes could be impossible to realize in practice. Therefore our main goal here is to 
introduce a parameter identification law for a large class of nonlinear systems for which 
not all the states are measurable. This approach combines parameter identification with 
estimation of non-measurable states restored by using an observer. In order to do this, 
we generalize to nonlinear parameter identification the well known work on linear 
parameter identification based on variable structure theory (see Sliding mode control). 
In classical adaptive control, an additional property (the persistent excitation) is required 
in order to ensure the parameter convergence. In our approach, the use of the well-
known chattering property, an inherent property of the variable structure observer, 
makes possible the design of the parameter estimation law, even in a finite time, without 
having to add additional properties. 
 
In Section 2, a specific sliding observer for linear analytic nonlinear systems where only 
the first state is measurable, is proposed. Thanks to the use of a Lyapunov candidate 
function, one can prove its convergence in finite time. In Section 3, we introduce a new 
parameter estimation law. The convergence of the algorithm is proving by using the 
invariance and chattering properties of the sliding regimes. However, this new 
parameter estimation law is restricted to nonlinear systems where the control part is 
linear. In Section 4, the parameter vector and the state vector are derived without the use 
of a persistent signal excitation. Simulations results in Section 5 illustrate the use of the 
algorithm and highlight that the method is robust with respect to parameter uncertainties 
and additive measurement noise. 
 
2. State Identification 
 
The aim of this section is to derive an observer for the state vector of a linear analytic 
nonlinear system of the form 
 

( , ) ( , )x A x t B x t u= +  
 
First, for this class of systems, it is possible to determine a controllability form which 
could be represented by a triangular system as follows, (see Design of nonlinear control 
systems) 
 

1 2

1

( ) ( )n

x x

x f x g x u
y x

=

= +

=

  (1) 

 
with nx R∈  Without loss of generality, let us assume that the measurable state is 1x . 
Moreover, assume that ( )f x  et ( )g x  are Lipschitz, that (1) is input to state stable and 
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that the input u is bounded. Let us note by x̂  the estimation of the vector state (1). The 
dynamics of each component ˆ , 1,...,ix i n=  of x̂  are designed such that 
 

1 2 1

1

ˆ ˆ

ˆ ˆi i i

x x v

x x v+

= +

= +
 

ˆ ˆ ˆ( ) ( )n nx f x g x u v= + +   (2) 
 
With 
 

1 1 1 1̂sgn( )
sgn( )i i i

v k x x
v k z
= −

=
 

 
1i i i iz z vτ −+ =  for 2,3,...,i n=   (3) 

 
From (1) and (2), the dynamics of the state estimation errors are given by 
 

1 1 1

1 2 1 1

ˆ
sgn( )

ˆi i i

e x x
e e k e
e x x

= −

= −

= −

  (4) 

 
1i i ie e v+= −  for 2,3,... 1i n= −   (5) 

 
ˆ

ˆ ˆ( ) ( ) ( ) ( )
n n n

n n

e x x
e f x f x g x u g x u v

= −

= − + − −
  (6) 

 
The following result can be proved: There exists a compact subset of nR , denoted D , 
such that, for any initial condition 0x ∈D , we can find positive constants , 1,...,ik i n=  
sufficiently large and positive constants , 2,...,i i nτ =  sufficiently small such that the 
state estimation errors , 1,...,ie i n=  (4), (5), (6) converge to zero in a finite time. 
 
Proof 
 
First Step: Let us first consider the candidate Lyapunov function 
 

2
1 1

1
2

V e=  

 
Taking into account (4), its derivative with respect to time can be written 
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1 1 1 1 2 1 1

1 1 2 1 1

( sgn( )) andV e e e e k e

V e e k e

= = −

= −
  (7) 

 
Therefore, 
 

1 1 2 1 1maxV e e k e≤ −   (8) 
 
Finally, if the positive constant 1k  is chosen such that 
 

1 2 maxk e>  
 

1V  will be negative definite. A sliding mode is reached after a finite time, 1t . The sliding 
manifold is defined by 
 

1 1 2 max0;e k e= >  
 
Moreover, thanks to the invariance property, the state estimation error 1e  and its time 
derivative are such that 
 

1 1 1( ) ( ) 0,e t e t t t= = ∀ ≥ . 
 
Finally, there exists a finite time 1t  and a constant 1k  such that 
 

1 1
1

1

ˆ ( ) ( )
( ) 0

x t x t
t t

e t
=⎧

∀ ≥ ⎨ =⎩
  (9) 

 
Step i  for 2,3,..., 1i n= −  Let us study now the following candidate Lyapunov function 
 

2
1

1
2i i iV e V −= +  

 
By using the previous steps and (9), the time derivative is given by 
 

i i iV e e≤  
 
From (5) we can write 
 

1

1

( ) and
( sgn ( ))

i i i i

i i i i i

V e e v
V e e k e

+

+

≤ −

≤ −
  (10) 

 
Let us now write again Eqs. (10); it follows that  
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1 maxi i i i iV e e k e+≤ −   (11) 
 
Therefore, if a positive constant ik  is chosen such that 
 

1 maxi ik e +>  
 

iV  will be negative definite. A sliding mode is then reached after a finite time 1i it t −> . 
The sliding manifold is now defined by  
 

1 max0;i i ie k e += >  
 
Moreover, taking into account the invariance conditions, the state estimation error ie  
and its time derivative are such that 
 

( ) ( ) 0,i i ie t e t t t= = ∀ ≥  
 
Finally, there exists a finite time it  and a constant ik  such that 
 

ˆ ( ) ( )
( ) 0

i i
i

i

x t x t
t t

e t
=⎧

∀ ≥ ⎨ =⎩
  (12) 

 
Step n : Let us consider the Lyapunov function: 
 
 

2
1

1
2n n nV e V −= +  

 
By considering the previous steps and (12), the following inequality of the time 
derivative of this Lyapunov function can be written 
 

n n nV e e≤  
 
Therefore, by taking into account (6), we obtain 
 

ˆ ˆ( ( ) ( ) ( ) ( ) )

ˆ ˆ( ( ) ( ) ( ) ( ) ) ( sgn( ))
n n n

n n n n n

V e f x f x g x u g x u v and

V e f x f x g x u g x u e k e

≤ − + − −

≤ − + − −
 (13) 

 
for nk  sufficiently small. Now from the hypothesis of the system (1), Eq. (13) can be 
written 
 

( )n n n nV e e kα≤ −  
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with α  as a Lipschitz constant. Therefore, if the constant nk  is chosen such that 
 

n nk eα>  
 
then nV  will be negative definite. A sliding mode is reached after a finite time, denoted 

1n nt t −>  The sliding manifold is defined by 
 

0;n n ne k eα= >  
 
By using the invariance conditions, the state estimation error ne  and its time derivative 
satisfy 
 

( ) ( ) 0,n n ne t e t t t= = ∀ ≥  
 
and we can see that there exist a finite time nt  and a positive constant nk  such that 
 

ˆ
0

n n
n

n

x x
t t

e
=⎧

∀ ≥ ⎨ =⎩
  (14) 

 
- 
- 
- 
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