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Summary 
 
System Identification concerns the problem of building mathematical models of 
dynamical systems. This involves a fair amount of theory and algorithms. Equally 
important, though, is the practical side of the methodology. This chapter deals with the 
issues that are essential to construct a good model in practice. Such issues include the 
problem of input and experiment design. Typical essential features of the input are 
discussed as well as examples of commonly used inputs. Next comes the question of how 
to condition the measured signals. This involves issues of removing trends and 
disturbances outside of the frequency ranges of interest for the model. The most 
demanding task is to find a suitable model structure, guided by information in the 
observed data. A first cut methodology for this is described. For a successful application, 
it is in the end a matter of combining intuition, and information from various data test. 
Two applications, a fighter aircraft and a buffer vessel in process industry illustrate the 
process. 
 
1. The Framework 
 
System Identification is both a science and an art. In several articles in this encyclopedia, 
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the science of System Identification has been developed. This involves techniques for 
parameter estimation, the statistical framework, choice of model structures, techniques 
for non-parametric models etc. The art of System Identification concerns how all these 
techniques are applied in practice: What problems have to be solved, what choices have to 
be made when the user faces a real-life plant and need a mathematical model of how it 
works. Some issues that are critical for this situation will be reviewed in this article. 
 
1.4. Starting Point 
 
We consider the following set-up for system identification. The set of models that can be 
used consists of linear time invariant (LTI) descriptions of dynamical systems. They will 
generally be described as 
 
 ( ) ( , ) ( ) ( , ) ( )y t G q u t H q e tθ θ= +  (1) 
 
Here y(t) is the output at time t, u(t) is the input signal at time t, and e(t) is a disturbance 
source, typically described as a sequence of independent random variables. q is the shift 
operator, and G and H are rational transfer functions in q. In other words, Eq. (1) 
describes a set of linear difference equations relating the input, output, and disturbances 
to each other. 
 
The signals y and u are observed, while e is not measurable. The measurements are made 
in discrete time, and they will generally just be enumerated as ZN = {y(1), u(1), y(2), 
u(2), ..., y(N), u(N)}. The model could very well be multivariable, i.e. y(t) and u(t) could 
be vectors containing several input and output variables. 
 
The system identification problem is to 
 
• generate a suitable input signal u 
• measure the corresponding y 
• find an appropriate model parameterization (structure) in Eq. (1) 
• determine the “best values” of the corresponding parameters θ 
• determine if the resulting model is adequate for its intended purpose 
 
1.5. Some Typical Model Structures 
 
The general model in Eq. (1) contains all possible LTI models. It is just a question of how 
to parameterize the transfer functions. See other entries in this encyclopedia for more 
details on how this can be done. Some common special cases are 
 
• ARX models: A(q)y(t) = B(q) + e(t). This corresponds to the parameterization of 

G(q, θ) as a rational function 
 

( )( , )
( )

B qG q
A q

θ =  (2) 

 
with the parameters θ being the coefficients of the numerator and denominator 
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polynomials. This structure has a noise model 
 

1( , )
( )

H q
A q

θ =  (3) 

 
that does not have any extra degree of freedom. The most important reason for the 
use of such ARX models is that θ can be estimated by a simple linear least squares 
method. 

• Output Error (OE) models: These use a fixed noise model H(q, θ) = 1 and thus 
assume all measurement error to be white noise at the output of the system. 

• State-space models: These correspond to the parameterization of G and H in terms 
of matrices A, B, C, D, K as in 

•  
1( , ) ( )( ( )) ( ) ( )G q C qI A B Dθ θ θ θ θ−= − +  (4) 

 
1( , ) ( )( ( )) ( )H q C qI A K Iθ θ θ θ−= − +  (5) 

 
This means that the input-output relationship can be written as a state-space 
model (in innovations form): 
 

( 1) ( ) ( ) ( ) ( ) ( )x t A x t B K e tθ θ θ+ = + +  (6) 
 

( ) ( ) ( ) ( ) ( )y t C x t D e tθ θ= + +  (7) 
 
The parameterization of the state space matrices can be done in an arbitrary way. 
They could, for example be constructed from an underlying continuous-time 
model with parameter entries corresponding to unknown constants of physical 
significance. 
 

1.6. Estimating the Parameters 
 
There are several possibilities for estimating the parameters in Eq. (1). A generic method 
is the prediction error approach: Form the error between the model output G(q, θ)u(t) 
and the measured output y(t) and filter it with the inverse noise model: 
 

1( , ) ( , )( ( ) ( , ) ( ))t H q y t G q u tε θ θ θ−= −  (8) 
 
Note that ε can be seen as an estimate of e in Eq. (1). Then, select the parameter estimate 
ˆ
Nθ  so that the size of these weighted errors becomes as small as possible: 

 
2

1

1ˆ arg min | ( , ) |
N

N
t

t
Nθ

θ ε θ
=

= ∑  (9) 

 
The minimization of this criterion, and hence the computation of the estimate must 
normally be made by iterative numerical search. It is essentially only the ARX model that 
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allows a closed form expression for ˆ
Nθ . 

 
For the state-space model in Eq. (6) there is another possibility to estimate the system 
matrices, known as subspace methods. In short, this method first estimates the states x 
from ARX- like expressions, and then treats Eq. (6) as a linear regression with x 
(pretended as) known. The advantage is a numerically efficient, non-iterative algorithm. 
 

 
 

Figure 1: Identification cycle. Rectangles: the computer’s main 
responsibility. Ovals: the user’s main responsibility. 

 
2. The User and the System Identification Problem 
 
To turn to the art of System Identification, we can pose as users faced with a physical 
process with which to experiment. The aim is to construct a reliable mathematical model. 
This task involves several subproblems: 
 

1. Select an input signal to apply to the process 
2. Collect the corresponding output data 
3. Scrutinize the obtained data to find out if some preprocessing will be necessary 
4. Specify a model structure. 
5. Let the computer deliver the best model in this structure, when applied to the 

collected data. 
6. Evaluate the properties of this model. 
7. Test a new structure, go to step 4. 
8. If the models obtained in this way are not adequate, go back to step 3 to try some 

other data preprocessing, or to step 1 to carry out a new experiment with another 
and more “revealing” input. 

 
See Figure 1 which illustrates this process. 
 
2.2. The Tool: Interactive Software 
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To have any chance of success it will be necessary to have good computer support. Figure 
1 shows (in rectangles) what support the computer can supply. The techniques and 
algorithms behind these rectangles belong to the “science” of System Identification. The 
remaining decisions, which have to be taken by the user, (marked in ovals in the figure) 
are what this article will focus on. 
 
The first thing that requires help is to compute the model and to evaluate its properties. 
There are now many commercially available program packages for identification that 
supply such help. They typically contain the following routines: 
 

A. Handling of data, plotting, and the like 
Filtering of data, removal of drift, choice of data segments, and so on. 

B. Non-parametric identification methods 
Estimation of covariances, Fourier transforms, correlation and spectral analysis, 
and so on. 

C. Parametric estimation methods 
Calculation of parametric estimates in different model structures. 

D. Presentation of models 
Simulation of models, estimation and plotting of poles and zeros, computation of 
frequency functions and plotting in Bode diagrams, and so on. 

E. Model validation 
Computation and analysis of residuals (ε(t, ˆ

Nθ )); comparison between different 
models’ properties, and the like. 

 
The existing program packages differ mainly by various user interfaces and by different 
options regarding the choice of model structure according to item C. 
 
One of the most used packages is MathWork’s SYSTEM IDENTIFICATION TOOLBOX (SITB), 
which is used together with MATLAB. The command structure is given by MATLAB’s 
programming environment with the workspace concept and MACRO possibilities in the 
form of m-files. SITB gives the possibility to use all model structures of the black-box 
type, Eq. (1), with an arbitrary number of inputs. ARX-models and state-space models 
with an arbitrary number of inputs and outputs are also covered. Moreover, the user can 
define arbitrary tailor-made linear state-space models in discrete and continuous time as 
in Eq. (6). A Graphical User Interface helps the user both to keep track of identified 
models and to guide him or her to available techniques. 
 
The remainder of this article will deal with the issues in the ovals of Figure 1: In Section 3 
the choice of input will be discussed, while Section 4 deals with data preprocessing. The 
difficult task to find a good model structure is then discussed in Section 5. Finally, two 
applications will be reviewed in Section 6. 
 
3. Choice of Input Signals 
 
The requirement from the previous section that the data should be informative means for 
open loop operation that the input should be persistently exciting (p.e.) of a certain order; 
i.e. that it contains sufficiently many distinct frequencies. This leaves a substantial 
amount of freedom for the actual choice, and we shall in this section discuss good and 
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typical choices of input signals. 
 
For the identification of linear systems, there are three basic facts that govern the choices: 
 

1. The asymptotic properties of the estimate (bias and variance) depend only on the 
input spectrum-not the actual waveform of the input. 

2. The input must have limited amplitude: ( )u u t u≤ ≤ . The crest factor measures 
how well a given signal utilizes such a given amplitude span: It is essentially 
defined as the maximum amplitude divided by the standard deviation of the 
signal. 

3. Periodic inputs may have certain advantages. 
 

- 
- 
- 
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