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Summary 
 
This chapter reviews the external and the internal representations of linear-time-
invariant systems. This is done both in the time and the frequency domains. The 
realization problem is then discussed. Given the importance of norms in control design 
and model reduction, the final part of this chapter is dedicated to the definition and 
computation of various norms. Again, the interplay between time and frequency norms 
is emphasized.  
 
1. Introduction 
 
One of the most powerful tools in the analysis and synthesis of linear time-invariant 
systems is the equivalence between the time domain and the frequency domain. Thus 
additional insight into problems in this area is obtained by viewing them both in time 
and in frequency. This dual nature accounts for the presence and great success of linear 
systems both in engineering theory and applications.  
 
In this chapter we will provide an overview of certain results concerning the analysis of 
linear dynamical systems. Time and frequency domain frameworks are inextricably 
connected. Therefore together with frequency domain considerations in the sequel, 
unavoidably, a good deal of time domain considerations are included as well.  
 
Our goals are as follows. First, basic system representations will be introduced, both in 
time and in frequency. Then the ensuing realization problem is formulated and solved. 
Roughly speaking the realization problem entails the construction of a state space model 
from frequency response data.  
 
The second goal is to introduce various norms for linear systems. This is of great 
importance both in control design and in system approximation/model reduction.  
 
First it is shown that besides the convolution operator we need to attach a second 
operator to every linear system, namely the Hankel operator. The main attribute of this 
operator is that it has a discrete set of singular values, known as the Hankel singular 
values. These singular values are main ingredients of numerous computations involving 
control design and model reduction of linear systems. Besides the Hankel norm, we 
discuss various p-norms, where 1,2,p = ∞ . It turns out that norms which are obtained 
for 2p =  have both a time domain and a frequency domain interpretation. The rest 
have an interpretation in the time domain only.  
 
The chapter is organized as follows. The next section is dedicated to a collection of 
useful result on two topics: The Laplace and discrete-Laplace transforms on the one 
hand and norms and the SVD on the other. Tables 1 and 2, summarize the salient 
properties of these two transforms. Section 3 develops the external and internal 
representations of linear systems. This is done both in the time and frequency domains, 
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with the results summarized in two further Tables 3,4. This discussion is followed by 
the formulation and solution of the realization problem. Finally Section 4 is dedicated to 
the exposition of various norms for linear systems. The basic features of these norms are 
summarized in Table 5. We conclude by outlining the use of the various norms in 
control system design and system approximation.  
 
2. Preliminaries 
 
2.1. The Laplace Transform and the Z -transform 
 
The logarithm can be considered as an elementary transform. It assigns a real number to 
any positive real number. It was invented in the middle ages and its purpose was to 
convert the multiplication of multi-digit numbers to addition. In the case of linear, time-
invariant systems the operation which one wishes to simplify is the derivative with 
respect to time in the continuous-time case or the shift in the discrete-time case. As a 
consequence, one also wishes to simplify the operation of convolution, both in discrete-
and continuous-time.  
 
Thus an operation is sought which will transform derivative into simple multiplication 
in the transform domain. In order to achieve this however, the transform needs to 
operate on functions of time. The resulting function will be one of complex frequency. 
This establishes two equivalent ways of dealing with linear, time-invariant systems, 
namely in the time domain and in the frequency domain. In the next two sections we 
will briefly review some basic properties of this transform, which is called Laplace 
transform in continuous-time and discrete-Laplace of Z -transform in discrete-time. 
 
2.1.1. Some Properties of the Laplace Transform  
 
Consider a function of time ( )f t . The unilateral Laplace transform of f is a function 
denoted by ( )F s of the complex variables s jw= +σ . The definition of F is as 
follows: 

0
( ) ( ) : ( ) stf t F s f t e dt∞ −

−
→ = ∫
L

 (2.1) 

 
Therefore the values of f for negative time are ignored by this transform. Instead, in 
order to capture the influence of the past, initial conditions at time zero are required (see 
Differentiation in time, see Table 1). The salient properties of the Laplace transform are 
summarized in Table 1.  
 
2.1.2. Some Properties of the Z -transform  
 
Consider a function of time ( )f t , where time is discrete t ∈ . The unilateral Z -

transform of  f is a function denoted by ( )F z of the complex variable jz re= θ . The 
definition of F is as follows: 
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0
( ) ( ) : ( )t

t
f t F z z f t

∞
−

=
→ = ∑
Z

 (2.2) 

 
The main features of this transform are summarized in Table 2. 
 

Basic Laplace transform properties 

Property Time signal L -transform 

Linearity 
 
 
Shifting in the s-domain 
 
 
Time scaling  
 
 
Convolution 
 
 
 
 
 
Differentiation in time  
 
 
Differentiation if freq.  
 
Integration in time 

1 2( ) ( )af t bf t+  
 

0 ( )s te f t  
 
 

( ), 0f at a >  
 
 

1 2

1 2

( ) ( )
( ) ( ) 0, 0

f t f t
f t f t t

∗
= = <

 

 
 

( )d
dt f t  

 
( )tf t−  

 

0
( )t f d−∫ τ τ  

1 2( ) ( )aF s bF s+  
 

0( )F s s−  
 

( )1 s
a aF  

 
 
 

1 2( ) ( )F s F s  
 
 
 

( ) (0 )sF s f −−  
 

( )d
ds F s  

 
1 ( )s F s  

 
Impulse 
 
 
Exponential  

 
( )tδ  

 
( )ate tI  

 
1 
 

1
s a−  

Initial value Theorem : (0 ) lim ( )sf sF s+
→∞=  

Final value theorem: 0lim ( ) lim ( )t sf t sF s→∞ →=  

 
Table 1: Basic Laplace transform properties (The last 2 properties hold provided that 

( )f t contains no impulses or higher-order singularities at 0t = .) 
 

Basic Z -transform properties 
( t ∈ ) 
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Property Time signal Z -transform 

Linearity 
 
 

Forward shift 
 

Backward shift 
 
 

Scaling in freq. 
 

Conjugation 
 

Convolution 
 
 
 

Differentiation if freq. 
 
 

1 2( ) ( )af t bf t+  
 

( 1)f t −  
 

( 1)f t +  
 
( )ta f t  

 
* ( )f t  
 

1 2

1 2

( ) ( )
( ) ( ) 0, 0

f t f t
f t f t t

∗

= = <
 

 
( )tf t  
 
 

1 2( ) ( )aF z bF z+  
 

1 ( ) ( 1)z F z f− + −  
1 ( ) ( 1)z F z f− + −  

 
( )z

aF  

( )* *F z  
 
 

1 2( ) ( )F z F z  
 

( )d
dzz F z−  

 
 

 
Impulse 

 
 

Exponential 
 

First difference 
 

Accumulation 

 
( )tδ  
 
( )na tI  
 

( ) ( 1)f t f t− −  
 

0 ( )n
k f t=∑  

 
1 
 
z

z a−  
 

1(1 ) ( ) ( 1)z F z f−− − −  
 

1
1 ( )

1
F z

z−−
 

Initial value Theorem : [0] lim ( )zf F z→∞=  

Final value theorem: 0lim ( ) lim ( )t sf t sF s→∞ →=  

 
Table 2: Basic Z -transform properties 

 
2.2. Norms of Vectors, Matrices and the SVD 
 
In this section we will first review some material from liner algebra which pertains to 
norms of vectors, norms of operators (matrices), both in finite and infinite dimensions. 
The latter are of importance because a linear system can be viewed as a map between 
infinite dimensional spaces. The Singular Value Decomposition (SVD) will also be 
introduced and its properties briefly discussed.  
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2.2.1. Norms of Finite-dimensional Vectors and Matrices 
 
Let X be a linear space over the field Kwhich is either the field of reals or that of 
complex numbers . A norm on X is a function :v X → , such that the following 
three properties are satisfies. Non-strict positivity: ( ) 0,v x x X≥ ∀ ∈ , with equality if 

0x = ; triangle inequality: ( ) ( ) ( ), ,v x y v x v y x y X+ ≤ + ∀ ∈ ; positive 

homogeneity: ( ) ( ), ,v x v x x X= ∀ ∀α α α∈K ∈ . For vectors nx∈ or nx∈ the 
Hölder or p -norms are defined as follows: 
 

1 1
( | | ) , 1|| || : ,

max | |,

pp
i n i

p
i n i n

x
x px x

x p x

⎛ ⎞⎧⎪ Σ ≤ < ∞ ⎜ ⎟= =⎨ ⎜ ⎟
= ∞⎪ ⎜ ⎟⎩ ⎝ ⎠

∈

∈

 (2.3) 

 
where : {1,2,..., },n n n= ∈ . The 2-norm satisfies the Cauchy-Schwartz inequality:  
 

2 2| | || || || ||x y x y∗ ≤  
 
with equality holding if and only if , ,y cx c= ∈K or 0y = . An important property of 
the 2-norm is that it is invariant under unitary (orthogonal) transformations; let U be 
such a transformation, that is, nUU U U I∗ ∗= = . It follows that 

2 2
2 2|| || || ||Ux x U Ux x x x∗ ∗ ∗= = = . The following relationship between the Hölder 

norms for 1,2,p = ∞ holds: 
 

2 1|| || || || || ||x x x∞ ≤ ≤  
 
One type of matrix norms are those which are induced by the vector p -norms defined 
above. 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. VII – Frequency Domain Representation and Singular Value 
De-Composition - Athanasios C. Antoulas 

©Encyclopedia of Life Support Systems (EOLSS) 

 
 

Figure 1: The linear transformation Amaps the unit sphere into an ellipsoid. The 
singular values are the lengths of the semi-axes of the ellipsoid. 

 
More precisely for m nA ×∈  
 

, ind
0

|| ||
|| || : sup

|| ||
q

p q
x p

Ax
A

x−
≠

=  (2.4) 

 
is the induced ,p q -norm of A . In particular, for 1,2,p q= = ∞ the following 
expressions hold  
 

1
2

1 2|| || max | |, || || max | |, || || [ ( )]ij ij max
i n j mj m i n

A A A A A AA∗
∞= = =∑ ∑

∈ ∈∈ ∈
λ  

 
Besides the induced matrix norms, there exists other norms. One such class is the 
Schatten p -norms of matrices. These non-induced norms are unitarily invariant. Let 

( ), 1 min( , )i A i m n≤ ≤σ ,  be the singular values of A , i.e. the square roots of the 
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eigenvalues of AA∗ (see also Section 2.2.2). Then 
 

1

|| || : ( ) , 1
p

p
p i

i m
A A p

⎛ ⎞
= ≤ < ∞⎜ ⎟⎜ ⎟
⎝ ⎠
∑
∈

σ  (2.5) 

 
It follows that the Schatten norm for p = ∞ is  
 
|| || ( )maxA A∞= σ  
 
which is the same as the 2-induced norm of A . For 1p = we obtain the trace norm  
 

1|| || ( )i
i m

A A= ∑
∈

σ  

 
For 2p = the resulting norm is also known as the Frobenius norm, the Schatten 2-
norm, or the Hilbert-Schmidt norm of A : 
 

1
2 1 1

2 22
F|| || ( ) (trace( )) (trace( ))i

i m
A A A A AA∗ ∗⎛ ⎞

= = =⎜ ⎟⎜ ⎟
⎝ ⎠
∑
∈

σ  (2.6) 

 
where trace ( )⋅ denotes the trace of a matrix 
 
- 
- 
- 
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