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Summary 
 
This article illustrates how polynomials and polynomial matrices can be used to describe 
linear systems. The focus is put on the transformation to and from the state-space 
equations, because it is a convenient way to introduce gradually the most important 
properties of polynomials and polynomial matrices, such as: coprimeness, greatest 
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common divisors, unimodularity, column-and row-reducedness, canonical Hermite or 
Popov forms. 
 
1. Introduction 
 
The first step when studying and designing a control strategy for a physical system is the 
development of mathematical equations that describe the system. These equations are 
obtained by applying various physical laws such as Kirchoff’s voltage and current laws 
(electrical systems) or Newton’s law (mechanical systems).  
 
The equations that describe the physical system may have different forms. They may be 
linear equations, nonlinear equations, integral equations, difference equations, 
differential equations and so on. Depending on the problem being treated, one type of 
equation may prove more suitable than others. The linear equations used to describe 
linear systems are generally limited either to: 
 
• the input-output description, or external description in the frequency domain, where 

the equations describe the relationship between the system input and system output in 
the Laplace transform domain (continuous-time systems) or in the z-transform 
domain (discrete-time systems), or 

 
• the state-variable equation description, or internal description, a set of first-order 

linear differential equations (continuous-time systems) or difference equations 
(discrete-time systems). 

 
Prior to 1960, the design of control systems had been mostly carried out by using transfer 
functions. However, the design had been limited to the single variable, or 
single-input-single-output (SISO) case. Its extension to the multivariable, or 
multi-input-multi-output (MIMO) case had not been successful.  
 
The state-variable approach was developed in the sixties, and a number of new results 
were established in the SISO and MIMO cases. At that time, these results were not 
available in the transfer-function, or polynomial approach, so the interest in this approach 
was renewed in the seventies. Now most of the results are available in both the state-space 
and polynomial settings. 
 
The essential difference between the state-space approach and the polynomial approach 
resides in the practical way control problems are solved. Roughly speaking, the 
state-space approach heavily relies on the theory of real and complex matrices, whereas 
the polynomial approach is based on the theory of polynomials and polynomial matrices.  
 
For historical reasons, the computer-aided, control-system, design packages have been 
mostly developed in the late eighties and nineties for solving control problems formulated 
in the state-space approach. 
 
Polynomial techniques, generally simpler in concepts, were most notably favored by 
lecturers teaching the basics of control systems, and the numerical aspects have been left 
aside. Recent results tend however to counterbalance the trend and several reliable and 
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efficient numerical tools are now available to solve problems involving polynomials and 
polynomial matrices. In particular, the Polynomial Toolbox for Matlab is recommended 
for numerical computations with polynomials and polynomial matrices. Polynomial 
matrices, i. e. matrices with polynomial entries, can be found in a variety of applications 
in science and engineering. 
 
Second degree polynomial matrices arise in the control of large flexible space structures, 
earthquake engineering, the control of mechanical multi-body systems, stabilization of 
damped gyroscopic systems, robotics, and vibration control in structural dynamics. For 
illustration, natural modes and frequencies of a vibrating structure such as the Millennium 
footbridge over the river Thames in London are captured by the zeros of a quadratic 
polynomial matrix.  
 
Third degree polynomial matrices are sometimes used in aero-acoustics. In fluid 
mechanics, the study of the spatial stability of the Orr-Sommerfeld equation yields a 
quartic matrix polynomial. In this article, we describe a series of concepts related to 
polynomial matrices. We introduce them gradually, as they naturally arise, when studying 
standard transformations to and from the state-space domain. 
 
2. Scalar Systems 
 
2.1. Rational Transfer Function 
 
The transfer function description of a system gives a mathematical relation between the 
input and output signals of the system. Assuming zero initial conditions, the relationship 
between the input u and the output y of a system can be written as [y(s) = G(s)u(s)] where 
s is the Laplace transform in continuous-time (for discrete-time systems, we use the 
z-transform and the variable z), and G(s) is the scalar transfer function of the system. G(s) 
is a rational function of the indeterminate s that can be written as a ratio of two 
polynomials ( )

( )[ ( ) ]n s
d sG s =  where n(s) is a numerator polynomial and d(s) is a 

denominator polynomial in the indeterminate s. 
 
 In the above description of a transfer function, it is assumed that polynomials n(s) and 
d(s) are relatively prime, or coprime polynomials, i. e. they have no common factor, 
except possibly constants.  
 
The degree of denominator polynomial d(s) is the order of the linear system. When the 
denominator polynomial is monic, i.e. with leading coefficient equal to one, the transfer 
function is normalized or nominal.  
 
It is always possible to normalize a transfer function by dividing both numerator and 
denominator polynomials by the leading coefficient of the denominator polynomial.  
 
As an example, consider the mechanical system shown in Figure 1. 
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Figure 1: Mechanical system. 
 
For simplicity, we consider that the friction force between the floor and the mass consists 
of viscous friction only (we neglect the static friction and Coulomb friction). It is given by 
f = k1dy/dt, where k1 is the viscous friction coefficient. We also assume that the 
displacement of the spring is small, so that the spring force is equal to k2y, where k2 is the 
spring constant.  
 
Applying Newton’s law, the input-output description of the system from the external 
force u (input) to the displacement y (output) is given by 

2

2 1 2[ ]d y dy
dtdt

m u k k y= − −  Taking 
the Laplace transform and assuming zero initial conditions, we obtain [ms2y(s) = u(s) − 
k1sy(s) − k2y(s)] so that 2

1 2

1[ ( ) ( ) ( ) ( )]
ms k s k

y s u s G s u s
+ +

= = .  

 
Transfer function G(s) has numerator polynomial n(s) = 1 of degree zero and denominator 
polynomial d(s) = ms2 + k1s + k2 of degree two. The corresponding linear system has 
therefore order two. Dividing both n(s) and d(s) by the leading coefficient of d(s) we 

obtain the normalized transfer function 
2 1 2

1

[ ( ) ]m
k ks s
m m

G s
+ +

= . 

 
2.2. From Transfer Function To State-Space 
 
Similarly to network synthesis where the objective is to build a network that has a 
prescribed impedance or transfer function, it is very useful in a control system design to 
determine a dynamical equation that has a prescribed rational transfer matrix G(s). Such 
an equation is called a realization of G(s). The most common ones for linear systems are 
state-space realizations of the form 
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( ) ( ) ( )
( ) ( )

x t Ax t Bu t
y t Cx t

= +⎡ ⎤
⎢ ⎥=⎣ ⎦

 (1) 

 
where x(t) is the state vector, u(t) is the input, y(t) is the output and A, B, C are matrices of 
appropriate dimensions. Such realizations correspond to strictly proper transfer functions. 
In the case of proper transfer function, one must add a direct transmission term Du(t) to 
the output variable y(t).  
 
For simplicity, we shall assume that D = 0 in the sequel. For every transfer function G(s), 
there is an unlimited number of state-space realizations. Therefore, it is relevant to 
introduce some commonly used, or canonical realizations.  
 
We shall present two of them in the sequel: the controllable form and the observable form. 
However, note there are other canonical forms such as the controllability, observability, 
parallel, cascade or Jordan form, that we do not describe here for conciseness. 
 
2.2.1. Controllable Canonical Form 
 
For notational simplicity, we consider a system of third order, with normalized strictly 
proper transfer function 

2
0 1 2

2 3
0 1 2

( )
( )[ ( ) ]n n s n sn s

d s d d s d s s
G s + +

+ + +
= = . One can then easily extend the results 

to systems of arbitrary order. The controllable canonical realization corresponding to G(s) 
has state-space matrices: 
 

[ ]
2 1 0

2 1 0

1
1 0 0 0 .
0 1 0 0

d d d
A B C n n n

⎡ − − − ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦⎣ ⎦

 (2) 

 
As its name suggests, this realization is always controllable no matter whether n(s) and 
d(s) are coprime or not. If n(s) and d(s) are coprime, then the realization is observable as 
well. 
2.2.2. Observable Canonical Form 
 
The observable canonical realization corresponding to G(s) has state-space matrices 
 

[ ]
2 2

1 1

0 0

1 0
0 1 1 0 0 .
0 0

d n
A d B n C

d n

⎡ − ⎤⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥= − = =⎢ ⎥⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦⎣ ⎦

 (3) 

 
Note that this realization is dual to the controllable canonical realization in the sense that 
matrix A is transposed, and vectors B and C are interchanged and transposed. Obviously, 
this form is always observable. If n(s) and d(s) are coprime, it is also controllable. 
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2.3. From State-Space To Transfer Function 
 
Assuming zero initial conditions and taking the Laplace transform of the state-space 
equations we obtain that [G(s) = C(sI − A)−1B] where I denotes the identity matrix of the 
same dimension as matrix A.  
 
Recalling the formula of the inverse of a matrix, the above equation can be written as  
 
[C(sI − A)−1B = adj( )

det( )
C sI A B

sI A
−
−  = ( )

( )
n s

sd
].  

 
Polynomial ( )d s  is generally referred to as the characteristic polynomial of matrix A. It 
may happen that polynomials ( )n s  and ( )d s  have some common factors captured by a 
common polynomial term f(s), so that we can write ( ) ( ) ( ) ( )

( ) ( ) ( )( )
[ ]n s n s f s n s

d s f s d sd s
= =  where n(s) and 

d(s) are coprime.  
 
The ratio of n(s) over d(s) as defined above is a representation of the transfer function 
G(s). When n(s) and d(s) are coprime the representation is called irreducible. It turns out 
that G(s) is irreducible if and only if pair (A, B) is controllable and pair (C, A) is 
observable (see System Characteristics: Stability, Controllability, Observability).  
 
Checking the relative primeness of two polynomials n(s) and d(s) can be viewed as a 
special case of finding the greatest common divisor (GCD) of two polynomials. This can 
be done either with the Euclidean division algorithm, or with the help of Sylvester 
matrices. 
 
2.4. Minimality 
 
A state-space realization (A, B, C) of a transfer function G(s) is minimal if it has the 
smallest number of state variables, i. e. matrix A has the smallest dimension. It can be 
proven that (A, B, C) is minimal, if and only if the two polynomials defined above ( )n s  = 
CAdj (sI − A)B and ( )d s  = det (sI − A) are coprime, or equivalently, if and only if (A, B) 
is controllable and (C, A) is observable (see System Characteristics: Stability, 
Controllability, Observability). 
 
3. Multivariable Systems 
 
When trying to extend for multivariable systems the results on scalar systems presented in 
the previous section, several difficulties must be overcome. Multivariable systems are 
more involved because, unlike the scalar case, there does not seem to be a single unique 
canonical choice of realizations. Moreover, the connection with irreducible transfer 
functions is not obvious.  
 
The closest analogy with the scalar results can be achieved by using the so-called matrix 
fraction descriptions (MFDs) of rational matrices as the ratio of two relatively-prime 
polynomial matrices. To handle these objects, several properties of polynomial matrices 
must be introduced. 
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3.1. Matrix Fraction Description 
 
By analogy with the scalar case, a given rational matrix G(s) can be written as a fraction 
of two polynomial matrices, i. e. matrices with polynomial entries.  
 
As the product of matrices is not commutative, there exist two different ways to proceed. 
We can define a right matrix fraction description, or right MFD for short,  
 

1( ) ( ) ( )R RG s N s D s−=  (4) 
 
where non-singular polynomial matrix DR(s) enters G(s) from the right. Here 
non-singularity of a polynomial matrix means that its determinant is not identically zero, 
or equivalently that the matrix is non-singular for almost all values of the indeterminate. 
For example, the matrix 
 

2

1
1 1

s
s s
⎡ ⎤
⎢ ⎥+ +⎣ ⎦

 (5) 

 
is non-singular, whereas the matrix 
 

2

1
1

s
s s s
⎡ ⎤
⎢ ⎥+ +⎣ ⎦

 (6) 

 
is singular. Alternatively, we can also define a left MFD 
 

1( ) ( ) ( )L LG s D s N s−=  (7) 
 
where now the denominator polynomial matrix enters G(s) from the left. As an example 
of a left 
 
MFD, we consider the RCL network depicted on Figure 2, where the system outputs are 
the voltage and current through the inductor, and the input is the voltage.  
 
Applying Kirchoff’s laws, the Laplace transform and assuming zero initial conditions, we 
obtain the relation 
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Figure 2: RCL network. 
 

1

2

1 0
1

yLs
u

Cs RCs y Cs
− ⎡ ⎤⎡ ⎤ ⎡ ⎤

=⎢ ⎥⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦⎣ ⎦
 (8) 

 
which defines the system transfer function matrix as a left MFD 
 

1
11 0

( ) ( ) ( ) .
1L L

Ls
G s D s N s

Cs RCs Cs
−

−−⎡ ⎤ ⎡ ⎤
= = ⎢ ⎥ ⎢ ⎥+⎣ ⎦ ⎣ ⎦

 (9) 

 
- 
- 
- 
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