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Summary 

In this article, linear, continuous-time, finite-dimensional control systems with constant 
coefficients are considered. The article is divided into three main parts. The first part 
contains fundamental definitions of stability and necessary and sufficient conditions for 
stability. In the second part controllability of dynamical control system is defined and, 
using the controllability matrix, necessary and sufficient conditions for controllability 
are presented. Additionally, the important case of controllability with constrained 
controls is also discussed. The third part is devoted to a study of observability. In this 
part necessary and sufficient observability conditions are formulated using the 
observability matrix. In conclusion, several remarks concerning special cases of stability, 
controllability, and observability of linear control systems are given. It should be noted 
that all the results are given without proofs but with suitable literature references. 

1. Introduction 

Stability, controllability, and observability are among the fundamental concepts in 
modern mathematical control theory. They are qualitative properties of control systems 
and are of particular importance in control theory. Systematic study of controllability 
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and observability was started at the beginning of the 1960s, when the theory of 
controllability and observability based on a description in the form of state space for 
both time-invariant and time-varying linear control systems was worked out. The 
concept of stability is extremely important, because almost every workable control 
system is designed to be stable. If a control system is not stable, it is usually of no use in 
practice. Many dynamical systems are such that the control does not affect the complete 
state of the dynamical system but only a part of it. On the other hand, in real industrial 
processes it is very often possible to observe only a certain part of the complete state of 
the dynamical system. Therefore, it is very important to determine whether or not 
control and observation of the complete state of the dynamical system are possible. 
Roughly speaking, controllability generally means, that it is possible to steer a 
dynamical system from an arbitrary initial state to an arbitrary final state using the set of 
admissible controls. On the other hand, observability means that it is possible to recover 
the initial state of the dynamical system from knowledge of the input and output. 

Stability, controllability, and observability play an essential role in the development of 
modern mathematical control theory. There are important relationships between stability, 
controllability, and observability of linear control systems. Controllability and 
observability are also strongly connected with the theory of minimal realization of linear 
time-invariant control systems. It should be pointed out that a formal duality exists 
between the concepts of controllability and observability. 

In the literature there are many different definitions of stability, controllability, and 
observability, which depend on the type of dynamical control system. The main purpose 
of this article is to present a compact review of the existing stability, controllability, and 
observability results mainly for linear continuous-time and time-invariant control 
systems. It should be noted that for linear control systems, stability, controllability, and 
observability conditions have pure algebraic forms and are fairly easily computable. 
These conditions require verification, location of the roots of a characteristic polynomial, 
and of the rank conditions for suitable defined constant controllability and observability 
matrices. 

The article is organized as follows. Section 2 contains systems descriptions and 
fundamental results concerning the solution of the most popular linear continuous-time 
control models with constant coefficients. Section 3 is devoted to a study of different 
kinds of stability. Section 4 presents fundamental definitions of controllability and 
necessary and sufficient conditions for different kinds of controllability. Section 5 
contains fundamental definitions of observability, and necessary and sufficient 
conditions for observability. Finally, in Section 6 concluding remarks and comments 
concerning possible extensions are presented. For reasons of space, it is impossible to 
give a full survey of the subject. In consequence, only selected fundamental results 
without proofs are presented. 

2. Mathematical Model 

In the theory of linear time-invariant dynamical control systems the most popular and 
the most frequently used mathematical model is given by the following differential state 
equation and algebraic output equations 
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x’(t) = Ax(t) + Bu(t) (1) 

y(t) = Cx(t) (2) 

where x(t)∈Rn is a state vector, u(t)∈Rm is an input vector, y(t)∈Rp is an output vector, 
and A, B, and C are real matrices of appropriate dimensions.  

It is well known that for a given initial state x(0)∈Rn and control u(t)∈Rm, t≥0, there 
exist a unique solution x(t;x(0),u)∈Rn of the state equation (1) of the following form 

0
( ; (0), ) exp( ) (0) exp( ( )) ( )

t
x t x u At x A t s Bu s ds= + −∫  

Let P be an n × n constant nonsingular transformation matrix and let us define the 
equivalence transformation z(t)=Px(t). Then the state equation (1) and output equation 
(2) becomes 

z’(t) = Jz(t) + Gu(t) (3) 

y(t) = Hz(t) (4) 

where J=PAP-1, G=PB and H=CP-1. 

Dynamical systems (1), (2), and (3), (4) are said to be equivalent and many of their 
properties are invariant under the equivalence transformations. Among different 
equivalence transformations special attention should be paid on the transformation, 
which leads to the so-called Jordan canonical form of the dynamical system. If the 
matrix J is in the Jordan canonical form, then Eqs. (3) and (4) are said to be in a Jordan 
canonical form. It should be stressed, that that every dynamical system (1), (2) has an 
equivalent Jordan canonical form. 

3. Stability 

In order to introduce the stability definitions we need the concept of equilibrium state.  

Definition 1: A state xe of a dynamical system (1) is said to be an equilibrium state if 
and only if xe=x(t;xe,0) for all t≥0. 

We see from this definition that if a trajectory reaches an equilibrium state and if no 
input is applied, the trajectory will stay at the equilibrium state forever. Clearly, for 
linear dynamical systems the zero state is always an equilibrium state. 

Definition 2: An equilibrium state xe is said to be stable if and only if for any positive ε, 

there exists a positive number δ(ε) such that (0) ex x δ− ≤  implies that 
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( ; (0),0) ex t x x ε− ≤  for all t≥0. 

Roughly speaking, an equilibrium state xe is stable if the response due to any initial state 
that is sufficiently near to xe will not move far away from xe. If the response will, in 
addition, go back to xe, then xe is said to be asymptotically stable. 

Definition 3: An equilibrium state xe is said to be asymptotically stable if there is some 
γ≥0, and for every positive ε there corresponds a positive T(ε,γ), independent of x(0), 

such that (0) ex x δ− ≤  implies that ( ; (0),0) ex t x x ε− ≤  for all t≥T. 

In other words an equilibrium state xe is said to be asymptotically stable if it is stable in 
the sense of Lyapunov and if every motion starting sufficiently near to xe converges to 
xe as t →∞. 

Let si = Re(si) + jIm(si), i=1,2,3,...,r, r≤n denote the distinct eigenvalues of the matrix A 
and let “Re” and “Im” stand for the real part and the imaginary part of the eigenvalue si, 
respectively. 

Theorem 1: Every equilibrium state of the dynamical system (1) is stable if and only if 
all the eigenvalues of A have nonpositive (negative or zero) real parts, i.e., Re(si)≤0 for 
i=1,2,3,...,r and those with zero real parts are simple zeros of the minimal polynomial of 
A. 

Theorem 2: The zero state of the dynamical system (1) is asymptotically stable if and 
only if all the eigenvalues of A have negative real parts, i.e., Re(si)<0 for i=1,2,3,...,r. 

From the above theorems it directly follows that the stability and asymptotic stability of 
a dynamical system depend only on the matrix A and are independent of the matrices B 
and C. Suppose that the dynamical system (1) is stable or asymptotically stable, then the 
dynamical system remains stable or asymptotically stable after arbitrary equivalence 
transformation. This is natural and intuitively clear because an equivalence 
transformation changes only the basis of the state space. Therefore, we have the 
following corollary. 

Corollary 1: Stability and asymptotic stability are both invariant under any equivalence 
transformation. 

4. Controllability 

4.1. Fundamental Results 

Let us recall the most popular and frequently used fundamental definition of 
controllability for linear control systems with constant coefficients. 

Definition 4: Dynamical system (1) is said to be controllable if for every initial 
condition x(0) and every vector x1∈Rn, there exist a finite time t1 and control u(t)∈Rm, 
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t∈[0,t1], such that x(t1;x(0),u)=x1. 

This definition requires only that any initial state x(0) can be steered to any final state x1. 
The trajectory of the system is not specified. Furthermore, there are no constraints 
imposed on the control. In order to formulate easily computable algebraic controllability 
criteria let us introduce the so-called controllability matrix W defined as follows: 

W = [B,AB,A2B,...,An-1B].  

Controllability matrix W is an n × nm-dimensional constant matrix and depends only on 
system parameters. 

Theorem 3: Dynamical system (1) is controllable if and only if  

rank W = n  

Corollary 2: Dynamical system (1) is controllable if and only if the n × n-dimensional 
symmetric matrix WWT is nonsingular. 

Since the controllability matrix W does not depend on time t1, then from Theorem 3 and 
Corollary 2 it directly follows that in fact the controllability of a dynamical system does 
not depend on the length of control interval. Let us observe that in many cases, in order 
to check controllability it is not necessary to calculate the controllability matrix W but 
only a matrix with a smaller number of columns. It depends on the rank of the matrix B 
and the degree of the minimal polynomial of the matrix A, where the minimal 
polynomial is the polynomial of the lowest degree that annihilates matrix A. This is 
based on the following corollary. 

Corollary 3: Let rank B = r, and q is the degree of the minimal polynomial of the 
matrix A. Then dynamical system (1) is controllable if and only if 

rank[B,AB,A2B,...,An-kB] = n 

where the integer k ≤ min(n-r,q-1). 

In a case where the eigenvalues of the matrix A, si, i=1,2,3,...,n are known, we can 
check controllability using the following corollary. 

Corollary 4: Dynamical system (1) is controllable if and only if 

rank[siI-A|B] = n for all si, i=1,2,3,...,n 

Suppose that the dynamical system (1) is controllable, then the dynamical system 
remains controllable after the equivalence transformation. This is natural and intuitively 
clear because an equivalence transformation changes only the basis of the state space. 
Therefore, we have the following corollary. 

Corollary 5: Controllability is invariant under any equivalence transformation. 
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Since controllability of a dynamical system is preserved under any equivalence 
transformation, then it is possible to obtain a simpler controllability criterion by 
transforming the differential state equation (1) into a special form (3). If we transform 
dynamical system (1) into Jordan canonical form, then controllability can be determined 
very easily, almost by inspection. 

4.2. Stabilizability 

It is well known that the controllability concept for dynamical system (1) is strongly 
related to its stabilizability by the linear static state feedback of the following form 

u(t) = Kx(t) + v(t) (5) 

where v(t)∈Rm is a new control, K is m × n-dimensional constant state feedback matrix. 

Introducing the linear static state feedback given by equality (5) we directly obtain the 
linear differential state equation for the feedback linear dynamical system of the 
following form 

x'(t) = (A + BK)x(t) + Bv(t) (6) 

which is characterized by the pair of constant matrices (A + BK, B). 

An interesting result is the equivalence between controllability of the dynamical 
systems (1) and (6), explained in the following corollary. 

Corollary 6: Dynamical system (1) is controllable if and only if for an arbitrary matrix 
K the dynamical system (6) is controllable. 

From Corollary 6 it follows that under the controllability assumption we can arbitrarily 
form the spectrum of the dynamical system (1) by the introduction of suitable defined 
linear static state feedback (5). Hence, we have the following result. 

Theorem 4: The pair of matrices (A,B) represents the controllable dynamical system (1) 
if and only if for each set Λ consisting of n complex numbers and symmetric with 
respect to real axis, there exists constant state feedback matrix K such that the spectrum 
of the matrix (A+BK) is equal to the set Λ. 

Practically, in the design of the dynamical system, it is sometimes only necessary to 
change unstable eigenvalues (that is, the eigenvalues with nonnegative real parts) into 
stable eigenvalues (i.e., the eigenvalues with negative real parts). This is called 
stabilization of the dynamical system (1). Therefore, we have the following formal 
definition of stabilizability. 

Definition 5: The dynamical system (1) is said to be stabilizable if there exists a 
constant static state feedback matrix K such that the spectrum of the matrix (A+BK) 
entirely lies in the left-hand side of the complex plane. 
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Let Re(sj)≥0, for j=1,2,3,...,q≤n; in other words, sj are unstable eigenvalues of the 
dynamical system (1). An immediate relation between controllability and stabilizability 
of the dynamical system (1) gives the following theorem. 

Theorem 5: The dynamical system (1) is stabilizable if and only if all its unstable 
modes are controllable, that is, 

rank[sjI-A|B]=n for j=1,2,3,...,q 

Comparing Theorem 4 and Corollary 4 we see, that controllability of the dynamical 
system (1) always implies its stabilizability, but the converse statement is not always 
true. Therefore, the stabilizability concept is essentially weaker than the controllability 
one. 

4.3. Output Controllability 

Similar to the state controllability of a dynamical control system, it is possible to define 
the so-called output controllability for the output vector y(t) of a dynamical system. 
Although these two concepts are quite similar, it should be mentioned that the state 
controllability is a property of the differential state equation (1), whereas the output 
controllability is a property both of the state equation (1) and algebraic output equation 
(2). 

Definition 6: Dynamical system (1), (2) is said to be output controllable if for every y(0) 
and every vector y1∈Rp, there exist a finite time t1 and control u1(t)∈Rm, that transfers 
the output from y(0) to y1=y(t1). 

Theorem 6: Dynamical system (1), (2) is output controllable if and only if  

rank[CB,CAB,CA2B,...,CAn-1B] = p   

It should be pointed out, that the state controllability is defined only for the linear 
differential state equation (1), whereas the output controllability is defined for the input-
output description, that is, it depends also on the linear algebraic output equation (2). 
Therefore, these two concepts are not necessarily related. 

If the control system is output controllable, its output can be transferred to any desired 
vector at certain instant of time. A related problem is whether it is possible to steer the 
output following a preassigned curve over any interval of time. A control system whose 
output can be steered along the arbitrary given curve over any interval of time is said to 
be output function controllable or functional reproducible. 

4.4. Controllability with Constrained Controls 

In practice admissible controls are required to satisfy additional constraints. Let U⊂Rm 
be an arbitrary set and let the symbol M(U) denotes the set of admissible controls, i.e., 
the set of controls u(t)∈U for t∈[0,∞). 
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Definition 7: The dynamical system (1) is said to be U-controllable to zero if for any 
initial state x(0)∈Rn, there exist a finite time t1<∞ and an admissible control u(t)∈M(U), 
t∈[0,t1], such that x(t1; x(0),u) = x1. 

Definition 8: The dynamical system (1) is said to be U-controllable from zero if for any 
final state x1∈Rn, there exist a finite time t1<∞ and an admissible control u(t)∈M(U), 
t∈[0,t1], such that x(t1;0,u) = x1. 

Definition 9: The dynamical system (1) is said to be U-controllable if for any initial 
state x(0)∈Rn, and any final state x1∈Rn, there exist a finite time t1<∞ and an admissible 
control u(t)∈M(U), t∈[0,t1], such that x(t1; x(0),u) = x1. 

Generally, for arbitrary set U it is rather difficult to give easily computable criteria for 
constrained controllability. However, for certain special cases of the set U it is possible 
to formulate and prove algebraic constrained controllability conditions. 

Theorem 7: The dynamical system (1) is U-controllable to zero if and only if all the 
following conditions are satisfied simultaneously: 

1. There exists w∈U such that Bw=0. 
2. The convex hull CH(U) of the set U has nonempty interior in the space Rm. 
3. Rank[B,AB,A2B,...,An-1B] = n. 
4. There is no real eigenvector v∈Rn of the matrix Atr satisfying vtrBw≤0 for all 

w∈U. 
5. No eigenvalue of the matrix A has a positive real part. 

For the single input system, that is, m=1, Theorem 7 reduces to the following corollary: 

Corollary 7: Suppose that m=1 and U=[0,1]. Then the dynamical system (1) is U-
controllable to zero if and only if it is controllable without any constraints; that is, 
rank[B,AB,A2B,...,An-1B] = n, and matrix A has only complex eigenvalues. 

Theorem 8: Suppose the set U is a cone with vertex at zero and a nonempty interior in 
the space Rm. Then the dynamical system (1) is U-controllable from zero if and only if 

1. Rank[B,AB,A2B,...,An-1B] = n. 
2. There is no real eigenvector v∈Rn of the matrix Atr satisfying vtrBw≤0 for all 

w∈U. 

For the single input system, that is, m=1, Theorem (7) reduces to the following corollary. 

Corollary 8: Suppose that m=1 and U=[0,1]. Then the dynamical system (1) is U-
controllable from zero if and only if it is controllable without any constraints; in other 
words, rank[B,AB,A2B,...,An-1B] = n , and matrix A has only complex eigenvalues. 
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