
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. VIII - Reduced-Order State Observers - Bernard Friedland 

©Encyclopedia of Life Support Systems (EOLSS) 

REDUCED-ORDER STATE OBSERVERS 
 
Bernard Friedland 
Department of Electrical and Computer Engineering, New Jersey Institute of 
Technology, Newark, NJ, USA 
 
Keywords: Observer, Reduced-order observer, Luenberger observer, Algebraic Riccati 
equation, Doyle-Stein condition, Bass-Gura formula, Observability matrix, Discrete-
time algebraic Riccati equation, Separation principle, State estimation, Metastate. 
 
Contents 
 
1. Introduction 
2. Linear, Reduced-Order Observers 
3. Nonlinear Reduced-Order Observers 
Acknowledgement 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
A reduced-order observer for a dynamic process S  is a dynamic process of order 

,q n m= −  where n  is the order of S  and m  is the number of (independent) 
observations. In addition to being more parsimonious of state variables, the reduced 
order observer may exhibit performance superior to that of a full-order observer, 
particularly in a closed-loop control system. 
 
1. Introduction 
 
An observer is a dynamic system Ŝ  the purpose of which is to estimate the state of 
another dynamic system S using only the measured input and the measured output of 
the latter. If the order of Ŝ  is equal to the order of S  the observer is said to be “full-
order” (see Full Order State Observers.); if the order of Ŝ  is less than the order of S  
the observer is “reduced order”. 
 
Because the number of state variables in a reduced-order observer is less than the order 
n  of S  by the number m  of (independent) observations, the reduced-order observer is 
parsimonious, often a desirable engineering quality. But, in addition, a reduced-order 
observer may have better properties than a full-order observer, especially with regard to 
robustness of a control system which uses an observer to implement the control 
algorithm in an “observer-based” design. 
 
2. Linear, Reduced-Order Observers 
 
The theory of reduced-order observers is simplified by partitioning the state vector into 
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two substates: 
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  (1) 

 
such that  
 

ˆ= = =x y Cx x1 1   (2) 
 
where 
 

[ ]=C I 0  
 
is the observation vector (of dimension m ) and x2  (of dimension n m− ) comprises 
the components  of the state vector that cannot be measured directly. 
 
The assumption that =y x2  makes the resulting equations simpler, but it is not 
necessary. Equivalent results can be obtained for any observation matrix C  of rank m . 
 
In terms of x1  and x2  the plant dynamics are written 
 

11 12 1=x A x A x B u1 1 2+ +   (3) 
 

21 22 2=x A x A x B u2 1 2+ +   (4) 
 
Since x1  is directly measured, no observer is required for that substate, i.e. 
 
ˆ = =x x y1 1   (5) 
 
For the remaining substate, we define the reduced-order observer by  
 
ˆ =x Ky z2 +   (6) 
 
where z  is the state of a system of order n m− : 
 

ˆz = Az + Ly + Hu   (7) 
 
A block-diagram representation of the reduced-order observer is given in Figure 1(a) 
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Figure 1: Reduced-order observer (Two forms). 
 
The matrices ˆ ,A L H, ,  and K  are chosen, as in the case of the full-order observer, to 
ensure that the error in the estimation of the state converges to zero, independent of 
x,y,  andu . 
 
Since there is no error in estimation of ,x1 i.e., 
 

1 ˆ= − =e x x 01 1   (8) 
 
by virtue of (5), it is necessary only to ensure the convergence of 
 

2 ˆ= −e x x2 2   (9) 
 
to zero. 
 
From (4) – (7) 
 

( ) ( ) ( )2 21 11 22 12 2
ˆ ˆ ˆ= − − − − − −e A KA AK L x A KA A x Ae B KB H u1 2 2 1+ + + +  



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. VIII - Reduced-Order State Observers - Bernard Friedland 

©Encyclopedia of Life Support Systems (EOLSS) 

  (10) 
 
As in the case of the full-order observer, to make the coefficients of ,x1 x2 , and u  
vanish it is necessary that the matrices in (5) and (7) satisfy 
 

22 12
ˆ = −A A KA   (11) 

 

21 11
ˆ= −A KA AKL +   (12) 

 
= −KH B B2 1   (13) 

 
Two of these conditions (11) and (13) are analogous to conditions for a full-order 
observer; (12) is a new requirement for the additional matrix L  that is required by the 
reduced-order observer. 
 
When these conditions are satisfied, the error in estimation of x2  is given by  
 

2 2
ˆ=e Ae  

 
Hence the gain matrix K  must be chosen such that the eigenvalues of 

22 12
ˆ = −A A KA  lie in the (open) left-half plane; 22A  and 12A  in the reduced-order 

observer take the roles of A  and C  in the full-order observer; once the gain matrix 
K is chosen, there is no further freedom in the choice of L and H . 
 
The specific form of the new matrix L  in (12) suggests another option for 
implementation of the dynamics of the reduced-order observer, namely: 
 

ˆ ˆ=z Ax y u2 + +L H   (14) 
 
where 
 

21 11= −A KAL   (15) 
 
A block-diagram representation of this option is given in Figure 1 (b) 
 
The selection of the gain matrix K  of the reduced-order observer may be accomplished 
by any of the methods that can be used to select the gains of the full-order observer as 
discussed in the previous article. In particular, pole-placement, using any convenient 
algorithm is feasible. 
 
The gain matrix can also be obtained as the solution of a reduced-order Kalman filtering 
problem, taking into account the cross-correlation between the observation noise and the 
process noise. Suppose the dynamic process is governed by  
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11 12=x A x A x u v1 1 2 1 1+ + +B F   (16) 
 

21 22=x A x A x u v2 1 2 2 2+ + +B F   (17) 
 
with the observation being noise-free: 
 

=y x1   (18) 
 
In this case the gain matrix is given by  
 

( ) 1
12 2 1

−′ ′=K PA F QF R+   (19) 
 
where  
 

1 1′=R F QF  
 
and P  is the ( ) ( )n m n m− × −  covariance matrix of the estimation error 2,e  as 
given by  
 

1
12 12

−′ ′= −P AP PA PA R A P Q+ +   (20) 
 
where 
 

1
22 2 1 12

−′= −A A F QF R A   (21) 
 

1
2 2 2 1 1 2

−′ ′ ′= −Q F QF F QF R F QF   (22) 
 
The initial condition on (20) is  
 

( ) 0=P Pt0  

 
the covariance matrix of the initial uncertainty of the substate x2 . 
 
Note that (20) becomes homogeneous when 
 

=Q 0   (23) 
 
In this case it is possible that  
 

( ) ( )lim :
→

= =P P 0
t

t
∞

∞   (24) 
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which means that the steady-state error in estimating x2  converges to zero! We can’t 

expect to achieve anything better than this. Unfortunately, ( ) =P 0∞  is not the only 
possible steady-state solution to (23). To test whether it is, it is necessary to check 
whether the eigenvalues of the resulting observer dynamics matrix 
 

1
22 2 1 12

ˆ −= −A A F F A   (25) 
 
lie in the open left half-plane. If not, (24) is not the correct steady-state solution to (20). 
 
The eigenvalues of the “zero steady-state variance” observer dynamics matrix (25) have 
an interesting interpretation: as shown in by Friedland in 1989 (among others) these 
eigenvalues are the transmission zeros of the plant with respect to the noise input to the 
process. Hence the variance of the estimation error converges to zero if the plant is 
“minimum phase” with respect to the noise input. 
 
For purposes of robustness the noise distribution matrix F  should include a term 
proportional to the control distribution matrixB , i.e., 
 

′=F F q BB2+  
 
In this case, the zero-variance observer gain would satisfy 
 

= − =K 02 1H B B   (26) 
 
as q →∞.  
 
If (26) is satisfied the observer poles are located at the transmission zeros of the plant. 
Thus, in order to use the gain givenby (26), it is necessary for the plant to be minimum-
phase with respect to the input. In 1982 Rynaski has defined observers meeting this 
requirement as robust observers which, as discussed below, have remarkable robustness 
characteristics. 
 
When a reduced-order observer is used, it is readily established that the closed-loop 
dynamics are given by  
 

2 22 12 2

−⎡ ⎤ ⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦ ⎣ ⎦

x xA
e A KA e

2BGBG
0

  (27) 

 
and hence that the eigenvalues of the closed-loop system are given by  
 

22 12I I 0s s− − =A A KA+ +BG   (28) 
 
Thus the separation principle also holds when a reduced-order observer is used. 
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Robustness can be assessed by carrying out an analysis for a reduced-order observer 
similar to the analysis for a full-order observer. It is found that the characteristic 
polynomial for the closed-loop control system, when a reduced-order observer is used 
and the actual control distribution matrix = δB B B+ differs from the nominal 
(design) valueB , is given by   
 

c

s
s

s
−

− =
−−

I F
I A

I A
+ GG
BG

2

2

ΔΔ
  (29) 

 
where 
 

= −K 1 2B BδΔ   (30) 
 
It is seen that the characteristic polynomial of the closed-loop system reduces to that of 
(28) when  
 

0=Δ   (31) 
 
It is noted that (31) can hold in a single-input system in which the loop gain is the only 
variable parameter. In this case  
 

,= =δ ρ δ ρB B B B1 1 2 2   (32) 
 
and thus 
 

( )= − = −K 1 2B B Hρ ρΔ  

 

Hence, if the observer is designed to satisfy (26) ( )0= − =K2 1H B B  the separation 

principle holds for arbitrary changes in the loop gain, thus justifying Rynaski’s 
terminology. 
 
If the system is such that (26) cannot be satisfied, then, as shown by Madiwale and 
Williams, an  condition analogous to the full order Doyle-Stein condition can be derived 
from (29) in the case of a scalar control input. The condition is  
 

( ) ( )1
12 22 12 22 0

−⎡ ⎤− − =⎢ ⎥⎣ ⎦
I K I A K A K2 1+ B BΦ Φ  (33) 

 
where 
 

( ) 1
22 22s

−
= −I AΦ  
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