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Summary 
 
Model descriptions of time-varying systems, both in the time and frequency domains, 
are presented. Various stabilization techniques, differing as to the assumptions required 
on the plant are then discussed. It is shown that many design schemes used for time-
invariant systems have straightforward extensions to the time-varying case. 
 
5 Introduction 
 
In this article, we consider the design of controllers for linear, time-varying systems. 
Interest in the analysis of differential equations with time-varying coefficients dates to 
the earliest  days of control analysis. Early pioneers such as Floquet and Lyapunov 
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considered basic issues relating to the stability and reduction of these systems. Starting 
in the 1950s, there was considerable interest in extending to time-varying systems the 
integral transform techniques that were so useful in the study and design on linear time-
invariant systems. In the 1960s, these efforts were eclipsed by the time-domain, state-
space approach that swept the control systems community. This led to the development 
of many of the fundamental issues related to time-varying systems. In the 1980s, 
problems related to the robustness of feedback control systems spurred a renewed 
interest in frequency domain methods. This, once again, generated interest in input-
output and frequency domain analysis and synthesis of linear time-varying control 
systems. 
 
Time-varying models for systems typically arise in one of two ways. Consider the 
system described by the vector differential equation 
 

( ) ( ( ), ( ))t f t t=x x u  (1) 
 
where x(t) is the state and v(t) is the control at time t. Assume that v  is an open-loop 
control and x  is a reference trajectory which, together, satisfy Eq. (1). Defining the 
differences 
 

( ) ( ) ( ), and   ( ) ( ) ( ),t t t t t tδ = − = −x x v u u  
 
and ignoring higher order terms, these quantities satisfy the first order equation  
 

( ) ( ) ( ) ( ) ( )t t t t u tδ δ= +A B  
 
Here ( ) ( ( ), ( ))xA t f t t= x v  and ( ) ( ( ), ( ))uB t f t t= x v are the Jacobian matrices evaluated 
along the trajectory. Note that if the open-loop control is constant and the desired 
trajectory is a fixed point, then the resulting equation will be linear, time-invariant. 
 
A second way in which time-varying models can arise is by considering parameter 
variations in a physical model over the time-horizon of a system. For example, consider 
the model for a simple harmonic oscillator 
 

( ) ( ) 0my t ky t+ =   
 
where m corresponds to the mass and k is the force constant for the spring. If the mass 
and spring constant do not vary over time, this differential equation is that of a linear 
time-invariant system. Note that over short time-horizons, most systems can be 
described accurately by this type of time-invariant model. However, over longer 
periods, parameters in these time-invariant models will tend to exhibit variation. In this 
case, if either the mass of the oscillator, or the spring constant vary with time: that is, m 
≡ m(t) or k ≡ k(t), then a linear, time-varying model will be required. 
 
Typically, these parameter variations will fall under one of three classes: 
 

1. Slow parameter drift. By “slow” we mean that the system parameters are 
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changing at a rate considerably slower than the dynamics of the system. These 
are the systems that will be primarily considered in this article. 

2. “Jumps” or sudden variations. In this case, the parameters are usually assumed to 
be piecewise constant between the jumps. The times at which the parameters 
change may or may not be known a priori. 

3. Fast variations. These are systems in which the time-variations form an integral 
part of the system. An example of this class of system is AM modulation. In this 
case, a signal x(t) is modulated by a sinusoid sin(ωmt). This can be thought of as 
a time-varying gain k(t) whose time-variation is usually faster than the 
bandwidth of the input signals. 

 
The rest of this article is organized as follows. In Section 6, we introduce different 
model descriptions appropriate for time-varying systems. We present the state-space 
description as well as two general classes of input-output models. We also introduce the 
use of frequency domain description of time-varying systems. 
 
In Section Error! Reference source not found., we present some basic stabilization 
techniques that are appropriate for time-varying systems. Formulae for stabilizing 
controllers are given for both the case where the whole state is available to the designer 
as well as the more restrictive output feedback assumption. 
 
One drawback of the schemes presented in Section Error! Reference source not 
found. is that the designer must have a priori knowledge of the time-variations of the 
systems. Two methods for over-coming this difficulty are considered in Section Error! 
Reference source not found.. This first requires that the system be slowly time-
varying. A second approach that has come into prominence only recently is the control 
of linear parameter-varying systems. 
 
We should note that most of the techniques that are used to design controllers for linear 
time-varying systems are modifications of their time-invariant counterparts. For this 
reason, our presentation will highlight the corresponding differences and modifications. 
The reader is advised to consult the time-invariant methods first. 
 
6 Model Descriptions 
 
In this section, we discuss different models of linear time-varying systems that are used 
in the literature. 
 
6.1 State-Space Models 
 
We begin by considering state-space descriptions of time-varying systems. For a more 
general discussion of state-space representations,  see Canonical State Space 
Representations and Feedback . 
 
Consider the finite-dimensional ordinary differential equation 
 

0 0( ) ( ) ( ) ( ) ( ), ( )
( ) ( ) ( ) ( ) ( )

x t t t t t t
t t t t t
= + =
= +

A x B u x x
y C x D u

 (2) 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. VIII - Design Techniques for Time-Varying Systems - Pablo A. 
Iglesias 

©Encyclopedia of Life Support Systems (EOLSS) 

 
where u(t) ∈ m and y(t) ∈ p  are the input and output vectors respectively, and x(t) ∈ 

n  is the state vector. As we saw in Section 5, state-space models of linear time-
varying systems can arise as linearizations of nonlinear systems when the linearization 
is done with respect to a nominal non-constant trajectory. 
 
Given an arbitrary input u(t), it is possible to write a formula for the state and output 
satisfying  
 
Eq. (2). To do this, we first need the transition matrix of the homogeneous part of Eq. 
(2). The transition matrix is defined by the Peano-Baker series: 
 

1

1 1 1 2 2 1 1 3 3 2 1( , ) ( ) ( ) ( ) ( ) ( )
t t t t

t I d d d d d d
τ

σ σ σ σ σ

σ τ τ τ τ τ τ τ τ τ τ τΦ = + + + +∫ ∫ ∫ ∫ ∫A A A A A   

 
which converges uniformly and absolutely for any t and τ. For arbitrary A(t), it is not 
possible to simplify this expression to provide an analytical expression for the transition 
matrix. Two important exceptions are when the matrix is time-invariant, in which case 
Φ(t, σ) = exp[A(t − σ)] or when the system’s “A(t)” matrix commutes with it integral: 
 

( ) ( ) ( ) ( ), for all  and 
t t

t d d t t
σ σ

τ τ τ τ τ=∫ ∫A A A A   

 
In this case Φ(t, σ) = exp[ t

σ∫ A(τ)dτ]. Note that the transition matrix is always invertible 
and Φ(t, τ)−1 = Φ(τ, t). Moreover, it obeys the composition property 
 

( , ) ( , ) ( , )t tτ σ σ τΦ = Φ Φ   
 
for all t, τ and σ. 
 
Using the transition matrix, the solution to Eq. (2) consists of two components,  
 

0

zi zs

0 0

( ) ( ) ( )
zero input zero state

( , ) ( , ) ( ) ( )
t

t

x t x t x t

t t t dσ σ σ σ

= +

= Φ + ∫x B u
 

  
and thus 
 

0

0 0( ) ( ) ( ) ( , ) ( ) ( ) ( , )
t

t

t t t t u d t t tσ σ σ= + + Φ∫y D u G C x  (3) 

 
where 
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( , ) ( ) ( , ) ( )t t tσ σ σ= ΦG C B  (4) 
 
is the weighting pattern of the system, and this function is defined for all values of t and 
τ. 
 
6.2 Input-Output Models 
 
We will consider two other descriptions of linear time-varying systems, both based on 
the system’s input-output behavior. To avoid carrying numerous indices we restrict our 
attention to single-input, single-output systems, though multivariable generalizations are 
straightforward. 
 
6.2.1 Impulse Response 
 
Our first description is analogous to the time-invariant impulse response. Suppose that 
an impulse u(t) = δ(t − τ) is applied to a linear time-varying system at time τ (here δ (t) 
refers to the Dirac delta function). The corresponding output is 
 

( ) ( , ),y t g t tτ τ= ≥  (5) 
 
The function g(t, τ) is the impulse response of the system. Over t = τ it will coincide 
with the weighting pattern considered in the previous section. However, note that unlike 
the weighting pattern, which is defined for all values of t and τ, the impulse response is 
defined only for t ≥ τ. For time-invariant systems g(t, τ) = g(t − τ). For this reason, the 
function ˆ ( , ) ( , )g t g t tτ τ= −  is sometimes preferred. 
 
For a general input u(t) defined for t ≥ t0, the output is 
 

0 0

ˆ( ) ( , ) ( ) ( , ) ( )
t t

t t

y t g t u d g t t u dτ τ τ τ τ τ= = −∫ ∫  (6) 

 
- 
- 
- 
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