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Summary 
 
This chapter concerns the analysis and control system design of linear multivariable 
systems. The systems are represented in several different forms in state space. 

1. Linear Multivariable Systems 

1.1. Emergence of State Space Approach 

A linear system with multiple-inputs and/or -outputs is called a linear multivariable 
system (or linear a MIMO system). The history of the emergence of multivariable linear 
control systems theory is written nicely in Pearson (1991) describing how Kalman’s 
state space approach appeared after Freeman and Kavanagh’s multivariable control 
approaches based on transfer function models. The state space approach has introduced 
an effective and systematic method for the design of a controller for a multivariable 
system. Description of a multivariable system by a set of first order simultaneous 
differential equations is called a state space representation which had been used by 
Lyapunov for stability analysis. Parks (1992) wrote the story of stability of Lyapunov in 
his article: “ A.M.Lyapunov’s stability theory —100 years on". Control system design 
in today’s sense had been initiated by a series of seminal papers of Kalman, which not 
only proposed optimal control for Linear Quadratic (LQ) criterion (Kalman 1960) and 
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the so-called Kalman-Bucy Filter (Kalman and Bucy 1961) but also introduced the 
structural properties of linear multivariable systems like controllability and 
observability with the idea of duality (Kalman 1960). Controllability is the existence of 
a control input to transfer the initial state to the origin, which gives a sufficient 
condition for the existence of an optimal control. Observability which assures the 
existence of a filter is related to the unobservable subspace, which consists of states 
yielding zero outputs for zero inputs. The most impressive result in LQ optimal control 
is that the control law is a state feedback law given by the solution of a Riccati equation 
and the state is estimated by a filter constructed using the solution of Riccati equation. 
The duality of control and state estimation is clarified by Kalman in 1960 in his paper at 
IFAC Moscow Congress. Wonham later showed that the control law and the filter can 
be designed independently, which is known as the Separation Principle (Wonham 
1968). For his contributions to the development of system theory, IEEE Trans. on 
Automatic Control dedicated the December 1971  Special Issue on Linear-Quadratic-
Gaussian Problem to R.E.Kalman which included bibliography spanning the literature 
on the subject until 1971 (Mendel and Gieseking 1971). Kalman was awarded IEEE 
Medal of Honor in 1974 and the Kyoto Prize in 1985. A list of Kalman’s publications is 
available in the book edited by Antoulas (1991). 
 
The state space representation or the internal description of an n -dimensional linear 
multivariable system with  m -inputs, p -output, is expressed as  
 
d x Ax Bu
dt

= +   (1) 

 
y Cx Du= +   (2) 
 
where x  is an n -state vector, u  is an m -input vector, y  is a p-output vector, and 
A B C D, , ,  are n n× , n m× , p n×  and p m×  real coefficients matrices. The transfer 
function of the system is  
 

1( ) ( )H s C sI A B D−= − +   (3) 
 
Thus the transfer function is uniquely determined from the state space representation but 
the state space representation can not be given uniquely from a transfer function. The 
state space representation constructed from the input-output relation like transfer 
function or Markov Parameters is called a realization and the minimal dimension of the 
realization called the minimal realization is related to the structure of the system from 
the controllability and observability viewpoint (Gilbert 1963), where the Markov 
parameters are 0 1 2iD CA B i, , = , , ,  for the above given system. The state space 
representation depends on the choice of the coordinates, and the system with the state 
represented by different coordinates is said to be an equivalent system which has the 
same transfer function. Since a class of such systems with the same dimension has the 
same transfer function, the standard form representing the class is called the canonical 
form, and the controllable and observable canonical forms have been used as the 
standard forms of systems (Luenberger 1967). The structure of systems from either 
controllability or observability point of view has been studied extensively (Kalman 
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1963, Popov 1972). The control input to stabilize the system described in state space is 
achieved by the state feedback  
 
u Fx=   (4) 
 
if the system is stabilizable. In this case, the control law can be determined so that the 
closed loop system  
 

( )d x A BF x
dt

= +   (5) 

is stable. Equivalently, all eigenvalues of ( )A BF+  can be assigned in the left half of 
the complex plane by properly choosing the control matrix F . If ( )A B,  is controllable, 
these eigenvalues can be assigned arbitrarily (see Pole Placement Control). Thus 
controllable system can be stabilized. The controllability of ( )A B,  is that the 
controllable subspace ( 2 1Im [ ]nage B AB A B A B−, , , , ) is equal to the whole state space. 
The invariant class of controllable systems for state feedbacks is represented by the 
Brunovsky canonical form (1970) (see Canonical Forms for State Space Descriptions). 
The realization of the system from a practical viewpoint has been studied by many 
people in the field of identification and Moore (1981) gave the idea of balanced 
realization, which is not only used in model reduction (Pernebo and Silvermann 1982) 
but also in robust control synthesis later. Robust control is a topic outside the scope of 
this chapter and will not be discussed. The realization from the Markov parameters was 
presented by Ho and Kalman (1966) (see Frequency Domain Representation and 
Singular Value Decomposition). Gopinath (1969) presented a method to determine a 
state space model from input-output data. The relation of the input output behavior to 
the state space was discussed in Willems (1986).  
 
The structure of the system has also been interpreted by the geometric point of view, 
which is called "Geometric Approach". The approach has been effectively used for 
disturbance decoupling and decoupling control by finding the input matrix generating 
the controllability subspace in the unobservable subspace. The details of the approach 
are found in the textbook by Wonham (1974).  
 
Since all state variables are not directly measurable, the state should be reconstructed 
from the input and output through the linear system 
 

ˆ ˆ ˆd z Az By Ju
dt

= + +   (6) 

 
ˆ ˆx̂ Cz Dy= +   (7) 

 
which is called the observer, where x̂  is the estimate of the state x , and Â  should be 
stable. x̂  satisfies  
 

ˆlim ( ) ( ) 0
t

x t x t
→∞

|| − ||=   (8) 
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The existence of the observer estimating the state is assured by the detectability of the 
system ( )C A, . Detectability means that all states in the unobservable subspace are 
stable, so the observable system is detectable. If the dimension of the observer is equal 
to that of the system n , it is called the full order state observer (see Full-Order State 
Observers) and if it is less than n , it is called the reduced order state observer (see 
Reduced-Order State Observers). 
 
Multivariable control based on the state space description has been applied in the design 
of real systems like industrial processes, transportation systems, robotics, manufacturing 
systems and others. Bryson and Ho (1969) described how to use optimal control in the 
practical problems. The applications to mechanical systems are also found in ASME J. 
of Dynamic Systems, Measurement and Control 50th Anniversary Issue (June, 1993). 
The approach based on the transfer function has been studied by Rosenbrock (1970) and 
Wolovich (1974), and the relation of the state space to the rational transfer function has 
become clearer. 
 
Many text books on linear multivariable control have been published and also coming to 
be published. Some of the early books are by Zadeh and Desoer (1963), Ogata (1967), 
Brockett (1969), Chen (1970), Desoer (1970) and others. 

1.2. Discrete-time Control 

The state space representation was first used for the analysis and design of discrete-time 
systems. Kalman started to use the state space approach for the analysis and design of 
discrete-time systems in order to evaluate the inter-sampling behavior. Tou (1964) 
wrote a book entitled "Modern Control Theory", since the state space approach was said 
to be modern control theory in those days. Text books on discrete-time control based on 
the state space have been written by Tou (1964), Kuo (1980) and Ackermann (1985), 
and those based on the transfer function were written by Wolovich (1974), Kucera 
(1979) and Ǻström and Wittenmark (1984). Ǻström developed control system design 
combined with identification, which is called self-tuning control. He has received the 
IEEE Medal of Honor in 1993. A list of Ǻström’s publications is available in 
(Wittenmark and Rantzer 1999). 
 
In designing a discrete-time controller for a continuous-time system, we have to 
consider a) hold devices and b) redesigned problems.  
 
A typical discrete-time system is one in which measurement of the output and the 
control action of the input take place at 0 1 2k kΔ, = , , , , where Δ  is the sampling 
interval. If the control input ( )u t  is keeping its value during the sampling interval,  
 

( ) ( ) ( 1)u t u k k t k= Δ , Δ ≤ < + Δ   (9) 
 
the input is considered as the output of a zero order hold. Using the above relation in the 
continuous-time system, the state space representation is rewritten as  
 

1k k kx x u+ = Φ +Γ   (10) 
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k k ky Cx Du= +   (11) 
 
where 
 

( ) ( ) ( )k k kx x k u u k y y k= Δ , = Δ , = Δ  
 
and 
 

0

A Ate e Bdt
ΔΔΦ = , Γ = ∫  

 
They are computed by 
 

0 0

0

A B

e
I

⎡ ⎤
⎢ ⎥
⎣ ⎦

Φ Γ⎡ ⎤
= ⎢ ⎥
⎣ ⎦

  (12) 

 
since 
 

( 1)
0 0

x A B xd k t k
u udt
⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= , Δ ≤ < + Δ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦

  (13) 

 
In the transformation of a continuous-time system to a discrete-time system, the poles 
(λ ) of the continuous-time system are transformed into eλΔ . The left half of the 
complex plane is transformed into the unit disk centered at the origin. All poles of a 
stable discrete-time system are placed inside the unit disk. This shows that a stable 
continuous-time system is transformed into a stable discrete-time system by 
discretization. For stabilization of a discrete-time system, the control input given by the 
state feedback  
 

k ku Fx=   (14) 
 
should locate all eigenvalues of ( )FΦ+Γ  inside the unit disk.  
 
Concerning zeros, Ǻström, Hagander and Sternby (1984) had shown that a continuous-
time system is transformed into a discrete-time system with more zeros some of which 
may lie outside the unit disk (loosely termed as unstable zeros). The discretization of a 
continuous system may make the system uncontrollable or unobservable depending on 
the choice of the sampling interval (Kalman, Ho, Narendra 1963) due to the zeros 
outside the unit circle (systems having such zeros are also known as nonminimum phase 
systems). 
 
This may be illustrated by the following example: A system with the transfer function  
 

2

2 2

(2 ) 1( )
2 (2 ) 1

sH s
s s

π
π

+ +
=

+ + +
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corresponds to the continuous-time system  
 

1 2 0 1 2
0 1 2 1 2

[0 5 0 5]

j j
x x u

j j
y x

π π
π π

− − − +⎡ ⎤ ⎡ ⎤
= +⎢ ⎥ ⎢ ⎥− + − −⎣ ⎦ ⎣ ⎦
= . , .

 

If this system is sampled at every unit time, i.e., the sampling interval Δ=1, the discrete-
time system with zero order hold for the input is given by  
 

1 1

1 1 1

0 1
0 1

[0 5 0 5]

k k k

k k

e e
x x u

e e
y x

− −⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥+ −⎢ ⎥ ⎢ ⎥−
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

−
= +

−

= . , .

 

 
Since the system is neither controllable nor observable, the input-output relation of this 
system is equivalent to the following first order system:  
  

1 1
1 (1 )k k k

k k

e e ux x
y x

− −
+ = + −

=
 

 
This is the discrete-time system obtained by sampling and zero order holding the 
continuous-time system with the transfer function  
 

1( )
1

H s
s

=
+

 

 
A different feature of a discrete-time system is the use of nonzero order hold for the 
control input and the multirate sampling of the output. This kind of mechanism makes it 
possible to enhance the characteristics (Kabamba 1987, Hamby, Juan, Kabambab 1996).  
 
Multirate sampling gives not only improvement of the performance but also some 
interesting characteristics of control (Araki 1993). Werner (1995) used multirate 
sampling for simultaneously stabilizing control systems.  

1.3. Riccati Equation and Stabilization for Continuous-time Systems 

Riccati differential equation was shown to be related to the adjoint equation of the 
system’s equation for the LQ optimal control (Kalman 1960) and filtering problems 
with white Gaussian measurement noise (Kalman and Bucy 1961). The optimal control 
minimizing the following quadratic criterion function:  
 

0
( ) ( ) ( )ft T T T

f f fJ x Qx u Ru dt x t P x t= + +∫   (15) 

 
for the linear system represented by the state space is given by  
 

1( ) ( ) ( )Tu t R B P t x t−= −   (16) 
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where R  is positive definite and ( )P t  is the solution of the following Riccati 
Differential Equation with terminal constraint:  
 

1 ( )T T
f f

d P A P PA Q PBR B P P t P
dt

−− = + + − , =   (17) 

The solution of the Riccati Differential Equation ( )P t  is given by (Bucy and Joseph 
1968)  
 

1
21 22 11 12( ) [ ( ) ( ) ( )][ ( ) ( ) ( )]f f f f f fP t t t t t P t t t t t P t −= Φ − +Φ − Φ − +Φ −  (18) 

 
where  
 

11 12

21 22

( ) ( )
( )

( ) ( )
Htt t

t e
t t

Φ Φ⎡ ⎤
Φ = =⎢ ⎥Φ Φ⎣ ⎦

 

 
where H  is the Hamiltonian matrix  
 

1 T

T

A BR B
H

Q A

−⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

−
=
− −

  (19) 

 
When the criterion considered is defined over a infinite time horizon, i.e., ft  is infinite, 
the LQ optimal control is given by constant state feedback which makes the closed loop 
system stable when the system is controllable and the pair of the criterion and the 
system is observable.  
 
The steady state solution of the Riccati differential equation is given by the Algebraic 
Riccati Equation (ARE). The Algebraic Riccati Equation corresponding to above LQ 
control is  
 

1 0T TA P PA Q PBR B P−+ + − =   (20) 
 
The positive definite solutions of Algebraic Riccati Equations determine the control law 
for the LQ optimal control (see Optimal Linear Quadratic Control for LQ). The Kalman 
Filter for the system subject to the disturbance and measurement noise  
 
d x Ax Bu Dw
dt

= + +   (21) 

 
y Cx n= +   (22) 
 
is given by  
 

ˆ ˆ ˆ( )d x Ax Bu K y Cx
dt

= + + −   (23) 
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where w  and n  are zero mean independent white Gaussian noise terms with variance 
Q  and R , and the filter gain K  is  
 

1TK PC R−=   (24) 

where P  is the positive definite solution of Algebraic Riccati Equation for the filter  
 

1 0T TAP PA Q PC R CP−+ + − =   (25) 
 
(see Kalman Filters). The positive definite solution of ARE is computed using the 
eigenvectors corresponding to the stable eigenvalues (Potter 1966) of Hamiltonian 
matrix H . This is computed if the system is controllable. Let the eigenvalues of H  
with negative real parts be 1 2i i nλ , = , , , , and the corresponding eigenvectors be 
[ ] 1 2T T T

i ix y i n, , = , , , . Then the positive definite solution of Algebraic Riccati Equation 
for LQ by Potter is  
 

1
1 2 1 2[ ][ ]n nP y y y x x x −= , , , , , ,   (26) 

 
The closed loop system by the optimal control is stable. This is proved by using 
Lyapunov equation, and it is found that the system is stable with the gain margin from 
0.5 to infinity (Safanov Athans 1971). The characteristics of Algebraic Riccati Equation 
are described well by Willems (1971). Assignment of the poles of the systems in the 
shifted left plane has been shown in the textbook of Anderson and Moore (1985).  
 
The feedback law to assign poles in the shifted disk for a continuous-time system (1988) 
can be constructed by using the modified discrete-time Riccati equation. When the 
criterion considered is defined over the finite time, the control law may not stabilize the 
closed loop system (see Optimal Linear Quadratic Control). The choice of the criterion 
function and the study of the stability for the LQ optimal control defined over the finite 
time were studied by Kwon and Pearson (1978). Riccati equation corresponding to 
discrete-time problems is also studied. The optimal control for the quadratic criterion  
 

0
( 2 )T T T

k D k k D k k D kJ x Q x x S u u R u
∞

= + +∑   (27) 

 
for the discrete time system is given by the state feedback  
 

1( ) ( )T T T
k D D D D ku R P P S x−= − + Γ Γ Γ Φ +   (28) 

 
where DP  is the positive definite solution of the following Discrete Riccati Algebraic 
Equation.  
 

1( )( ) ( )T T T T T
D D D D D D D D DP P Q P S R P P S−= Φ Φ + − Φ Γ + +Γ Γ Γ Φ +  (29) 
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The numerical computation of the positive definite solution of Discrete Riccati Equation 
for the discrete-time system when the system matrix is nonsingular was given by Potter 
(1968) and Pappas, Laub and Sandell presented one for the singular case (1980). 
 
The details including the historical background of the computation of the discrete-time 
Riccati equation are given by Chen and Francis (1995). Hitz and Anderson (1972), and 
Kono and Furuta (1986) have shown that there exists the same solution for the 
continuous-time and the discrete-time Riccati equations for the bilinearly transformed 
discrete-time system.  
 
A discrete-time controller for a continuous-time system was considered by Kuo which 
considered the inter-sampling behavior, with the quadratic cost fucntion. The approach 
is extended to the case of delay in the control action (Kondo and Furuta 1985).  
 
A closed form solution of the discrete-time Riccati equation is given by Furuta and 
Wongsaisuwan (1993) which makes it possible to design the LQ optimal control from 
the impulse response data (Furuta and Wongsaisuwan 1995) .  
 
The Riccati equation has also been used to design continuous control system to place 
the poles in a specified region like a disk (Kim and Furuta 1988).  
 
- 
- 
- 
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