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Summary 
 
Robust control is that branch of control theory which deals explicitly with system 
uncertainty and how it affects the analysis and design of control systems. In this article, 
we give an overview of robust control. We begin by describing the fundamental 
property of robustness inherent in a properly designed feedback structure. First, we 
show how a feedback system can be used to obtain an accurately controlled gain despite 
large parameter variability. Then, we demonstrate how integral control in a stable 
feedback system can precisely zero out the steady state error despite large plant 
uncertainty. This is followed by a short historical account of control theory and robust 
control. We then trace  the central role robustness has played in classical control 
designs, linear quadratic optimal control methods, H∞ optimal control techniques, 
absolute stability methods, and parametric robustness methods. These various 
approaches develop different analysis and design techniques to address the same basic 
problem of obtaining precise behavior from physical systems in the presence of 
significant uncertainty regarding the system models and signals. 
 
1. Introduction and Basic Elements of Control Systems 
 
In this section, we make some introductory and motivational remarks describing the 
problems of robust stability and control. We begin with some basic control concepts, 
terminology and techniques. This is followed by two sections dealing with the 
robustness of feedback systems to large parameter variations. Next, a brief historical 
sketch of control theory is included to serve as a background for the discussion of 
robustness. This is followed by a description of various uncertainty models in robust 
control and some of the current techniques for the design of robust control systems. 
 
To understand the concept of robustness in the context of control systems it is necessary 
to begin with a description of the basic functioning of a control system. We do so in the 
brief overview that follows. 
 
Control theory and control engineering deal with dynamic systems such as aircraft, 
spacecraft, ships, trains and automobiles, chemical and industrial processes such as 
distillation columns and rolling mills, electrical systems such as motors, generators and 
power systems, machines such as numerically controlled lathes and robots. In each case, 
the setting of the control problem is: 
 

1. There are certain dependent variables, called outputs to be controlled, which 
must be made to behave in a prescribed way. For instance, it may be necessary 
to assign the temperature and pressure at various points in a process, or the 
position and velocity of a vehicle, or the voltage and frequency in a power 
system, to given desired fixed values, despite uncontrolled and unknown 
variations at other points in the system. 

2. Certain independent variables called inputs, such as voltage applied to the motor 
terminals, or valve position, are available to regulate and control the behaviour 
of the system. Other dependent variables, such as position, velocity or 
temperature are accessible as dynamic measurements on the system. 
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3. There are unknown and unpredictable disturbances impacting the system. These 
could be, for example, the fluctuations of load in a power system, disturbances 
such as wind gusts acting on a vehicle, external weather conditions acting on an 
air conditioning plant or the fluctuating load torque on an elevator motor, as 
passengers enter and exit. 

4. The equations describing the plant dynamics, and the parameters contained in 
these equations, are not known at all or at best known imprecisely. This 
uncertainty can arise, even when the physical laws and equations governing a 
process are known well, for instance, because these equations were obtained by 
linearizing a nonlinear system about an operating point. As the operating point 
changes so do the system parameters. 

 
These considerations suggest the general representation of the plant, or system to be 
controlled, shown in Figure 1. 

 
The inputs or outputs shown in Figure 1 could actually be representing a vector of 
signals. In such cases, the plant is said to be a multivariable plant, as opposed to the 
case, where the signals are scalar, in which case the plant is said to be a scalar or 
monovariable plant. 
 

 
 

Figure 1: A general plant 
 
Control is exercised by feedback, which means that the corrective control input to the 
plant is generated by a device which is driven by the available measurements. Thus the 
controlled system can be represented by the following feedback or closed loop system 
shown in Figure 2. 
 

 
 

Figure 2: A feedback control system 
 
The control design problem is to determine the characteristics of the controller so that 
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the controlled outputs can be: 
 

1. Made to closely follow or equal prescribed values called references, which may 
be constant or time-varying, 

2. Maintained at the reference values despite the unknown disturbances, 
3. Conditions (1) and (2) are met despite the inherent uncertainties and changes in 

the plant dynamic characteristics. 
 
The first condition is called tracking, the second, disturbance rejection and the third 
robustness of the system. The simultaneous satisfaction of (1), (2) and (3) is called 
robust tracking and disturbance rejection and control systems designed to achieve this 
are called robust servomechanisms. In the next two sections, we show how the 
challenging design requirements described here can be met by using properly designed 
feedback structures. 
 
2. Feedback and Robustness 
 
In this section, we illustrate how robust systems can be built from highly unreliable 
components by using the feedback structure. Specifically, we consider the problem of 
obtaining a precisely controlled value of gain from a system containing large parameter 
uncertainty. 
 
Consider the system shown in Figure 3. Suppose that the system gain G is required to be 
100. Due to poor reliability of the components, this can vary by 50%. 
 

 
 

Figure 3: An open loop system 
 
Then the actual gain can range from 50 to 150. To remedy this situation, we use the 
feedback structure shown in Figure 4. 

 

 
 

Figure 4: A feedback system 
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The gain G  is again made with the same unreliable components but with nominal value 
much higher than 100, say 10,000, and we set C = 0.01. The overall gain of the 
feedback system is given by the expression 
 

 
1

G
CG+

. (1) 

 
It can easily be verified that with 50% variation in G  (that is, G  varies from 5,000 to 
15,000) the gain of the feedback system varies from 98.039 to 99.338. This remarkable 
increase in robustness, corresponding to a reduction of uncertainty from 50% to 1%, is 
one of the main reasons for the widespread use of feedback in the control and 
electronics industry. In the next section, we illustrate another wonderful application of 
feedback to the tracking and disturbance rejection problem. 
 
3. Robustness and Integral Control 
 
Integral control is used almost universally in the control industry to design robust 
servomechanisms. It works magically to remove tracking errors in the presence of 
disturbances even when very little is known regarding the signals and system 
characteristics. Integral action is most easily implemented by computer control. It turns 
out that hydraulic, pneumatic, electronic and mechanical integrators are also commonly 
used elements in control systems. In this section, we explain how integral control works 
in general to achieve robust tracking and disturbance rejection. 
 
Let us first consider an integrator, shown in Figure 5. The input-output relationship is 
given by 

 

 
 

Figure 5: An integrator 
 

 
( ) ( ) ( )

0
0

t
y t K u d y= τ τ+∫  (2) 

 
or 
 

 
( )dy Ku t

dt
=

 (3) 
 
where K is the integrator gain. 
 
Now suppose that the output y(t) is a constant. It follows from Eq. (3) that 
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( )0 0dy Ku t t

dt
= = ∀ >

. (4) 
 
Equation (4) proves the following important facts about the operation of an integrator: 
 

1. If the output of an integrator is constant over a segment of time, then the input 
must be identically zero over that same segment. 

2. The output of an integrator changes as long as the input is nonzero. 
 
The simple fact stated above suggests how an integrator can be used to solve the 
servomechanism problem. If a plant output y(t) is to track a constant reference value r, 
despite the presence of unknown constant disturbances, it is enough to: 
 

a. attach an integrator to the plant and make the error 

( ) ( )e t r y t= −  (5) 

the input to the integrator 
 

b. ensure that the closed loop system is asymptotically stable so that under constant 
reference and disturbance inputs, all signals, including the integrator output, 
reach constant steady state values. 

 
This is depicted in the block diagram shown in Figure 6: 

 

 
 

Figure 6: Servomechanism 
 
If the feedback system shown in the block diagram above is asymptotically stable, and 
the inputs r and d are constant; it follows that all signals in the closed loop will tend 
toward constant values. In particular the integrator output v(t) tends toward a constant 
value. Therefore, by the fundamental operation of an integrator established previously, 
it follows that the integrator input tends toward zero. Since we have arranged that this 
input is the tracking error, it follows that e(t) = r − y(t) tends to zero and hence y(t) 
tracks r as t → ∞. 
 
We emphasize that the steady state tracking property established previously is very 
robust. It holds as long as the closed loop is asymptotically stable and  
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(i) is independent of the particular values of the constant disturbances or 
references,  

(ii) is independent of the initial conditions of the plant and controller and  
(iii) is independent of whether the plant and controller are linear or nonlinear.  

 
Thus, the tracking problem is reduced to guaranteeing that stability is assured. In many 
practical systems, the stability of the closed loop system can even be ensured without 
detailed and exact knowledge of the plant characteristics and parameters, and this is 
known as robust stability. 
 
We next discuss how several plant outputs y1(t), y2(t),..., ym(t) can be pinned down to 
prescribed but arbitrary constant reference values r1, r2, ...,rm in the presence of 
unknown but constant disturbances d1, d2, ··· , dq. The previous argument can be 
extended to this multivariable case by attaching m integrators to the plant, and driving 
each integrator with its corresponding error input ei(t) = ri − yi(t), i = 1, ··· m. This is 
shown in the configuration shown in Figure 7: 

 
 

Figure 7: Multivariable servomechanism 
 
Once again it follows that as long as the closed loop system is stable, all signals in the 
system must tend to constant values and integral action forces the ei(t), i = 1, ··· , m to 
tend to zero asymptotically, regardless of the actual values of the disturbances dj, j = 1, 
··· , q. The existence of steady state inputs u1, u2, ...·, ur that make yi = ri, i = 1,..., m for 
arbitrary ri , i = 1, ··· , m requires that the plant equations relating yi, i = 1, ··· , m to u , j 
= 1, ··· , r be invertible for constant inputs. In the case of linear time invariant systems, 
this is equivalent to the requirement that the corresponding transfer matrix have rank 
equal to m at s = 0. Sometimes, this is restated as the two conditions  
 

(i) r ≥ m or at least as many control inputs as outputs to be controlled and  
(ii) G(s) has no transmission zero at s = 0. 

 
In general, the addition of an integrator to the plant tends to make the system less stable. 
This is because the integrator is an inherently unstable device; for instance, its response 
to a step input, a bounded signal, is a ramp, an unbounded signal. Therefore, the 
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problem of stabilizing the closed loop becomes a critical issue even when the plant is 
initially stable. 
 
Since integral action and the attainment of zero steady state error is independent of the 
particular value of the integrator gain K, we can see that this gain can be used to try to 
stabilize the system. This single degree of freedom is sometimes insufficient for 
attaining stability and an acceptable transient response, and additional gains are 
introduced as explained in the next section. This leads naturally to the proportional 
integral derivative (PID) controller structure of Figure 8 commonly used in industry: 

 
As long as the closed loop is stable, it is clear that the input to the integrator will be 
driven to zero independent of the values of the gains. Thus, the function of the gains kp, 
ki and kd is to stabilize the closed loop system, if possible, and to adjust the transient 
response of the system. In general, the derivative can be computed or obtained if the 
error is varying slowly. 

 
 

Figure 8: PID controller 
 
Since the response of the derivative to high frequency inputs is much higher than its 
response to slowly varying signals, the derivative term is usually omitted, especially if 
the error signal is corrupted by high frequency noise. 
 
In the next section, we provide a short history of control theory and robust control. This 
will serve as a useful backdrop to the discussion of robustness that will follow. 
 
4. A Short History of Control Theory and Robust Control 
 
4.1. The Classical Period 
 
Control theory began with the publication of Maxwell’s paper “On Governors” in 1868. 
This paper was motivated by the need to understand and correct the observed unstable 
behaviors of many locomotive steam engines in operation at the time. Maxwell showed 
that the behavior of a dynamic system could be approximated in the vicinity of an 
equilibrium point by a linear differential equation. Consequently, the stability or 
instability of such a system could be determined from the location of the roots of the 
characteristic equation of this linear differential equation. The speed of locomotives 
was controlled by centrifugal governors and so the problem was to determine the design 
parameters of the controller (flyball mass and inertia, spring tension etc.) to ensure 
stability of the closed loop system. Maxwell posed this in general terms: Determine the 
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constraints on the coefficients of a polynomial that ensure that the roots are confined to 
the left half plane, the stability region for continuous time systems. 
 
This problem had actually been already solved for the first time by the French 
mathematician Hermite in 1856! In his proof, Hermite related the location of the zeros 
of a polynomial with respect to the real line to the signature of a particular quadratic 
form. In 1877, the English physicist E.J. Routh, using the theory of Cauchy indices and 
of Sturm sequences, gave his now famous algorithm to compute the number k of roots 
which lie in the right half of the complex plane Re(s) ≥ 0. This algorithm thus gave a 
necessary and sufficient condition for stability in the particular case when k = 0. In 
1895, A. Hurwitz drawing his inspiration from Hermite’s work, gave another criterion 
for the stability of a polynomial. This new set of necessary and sufficient conditions 
took the form of n determinantal inequalities, where n is the degree of the polynomial to 
be tested. Equivalent results were discovered at the beginning of the century by I. Schur 
and A. Cohn for the discrete-time case, where the stability region is the interior of the 
unit disc in the complex plane. 
 
One of the main concerns of control engineers had always been the analysis and design 
of systems that are subjected to various types of uncertainties or perturbations. These 
may take the form of noise or of some particular external disturbance signals. 
Perturbations may also arise within the system, in its physical parameters. This latter 
type of perturbations, termed parametric perturbations, may be the result of actual 
variations in the physical parameters of the system, due to aging or changes in the 
operating conditions. For example in aircraft design, the coefficients of the models that 
are used depend heavily on the flight altitude. It may also be the consequence of 
uncertainties or errors in the model itself; for example, the mass of an aircraft varies 
between an upper limit and a lower limit depending on the passenger and baggage 
loading. From a design standpoint, this type of parameter variation problem is also 
encountered when the controller structure is fixed, but its parameters are adjustable. 
The choice of controller structure is usually dictated by physical, engineering, hardware 
and other constraints such as simplicity and economics. In this situation, the designer is 
left with a restricted number of controller or design parameters that have to be adjusted 
so as to obtain a satisfactory behavior for the closed-loop system; for example, PID 
controllers have only three parameters that can be adjusted. 
 
The characteristic polynomial of a closed-loop control system containing a plant with 
uncertain parameters will depend on those parameters. In this context, it is necessary to 
analyze the stability of a family of characteristic polynomials. It turns out that the 
Routh-Hurwitz conditions, which are so easy to check for a single polynomial, are 
almost useless for families of polynomials because they lead  to conditions that are 
highly nonlinear in the unknown parameters. Thus, in spite of the fundamental need for 
dealing with systems affected by parametric perturbations, engineers were faced from 
the outset with a major stumbling block in the form of the nonlinear character of the 
Routh-Hurwitz conditions, which moreover was the only tool available to deal with this 
problem. 
 
One of the most important and earliest contributions to stability analysis under 
parameter perturbations was made by Nyquist in his classic paper of 1932 on feedback 
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amplifier stability. This problem arose directly from his work on the problems of long-
distance telephony. This was soon followed by the work of Bode which eventually led 
to the introduction of the notions of gain and phase margins for feedback systems. 
Nyquist’s criterion and the concepts of gain and phase margin form the basis for much 
of the classical control system design methodology and are widely used by practicing 
control engineers. 
 
- 
- 
- 
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