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Summary 
 
These collective results present the problem of analyzing and designing control systems 
containing uncertain parameters. These were developed since the mid 1980’s following 
the publication of a breakthrough in 1978 on the stability of an interval polynomial 
family known as the Kharitonov Theorem. These fundamental results are aids in 
analyzing the behavior of control systems subject to real parameter uncertainty. The 
results specifically discussed here are the calculation of the real parametric stability 
margin, the Edge Theorem, Kharitonov’s Theorem, the Generalized Kharitonov 
Theorem, and the determination of frequency domain templates for systems with 
uncertain parameters. These results are structural in nature and complement the H2 and 
H∞ approaches to control design based on optimality. An important characteristic of 
many of these results is that the theory picks out a small subset of points or lines in the 
parameter space where the “weakest” set of systems lie in terms of stability. With this 
set in hand, one can evaluate robustness of stability, worst-case stability margins and 
performances of the control system. These calculations, therefore, form an important 
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part of the control engineer’s toolkit. Using these results, we also illustrate the 
application of these results to be designed by  
 

a. showing how classical design techniques can be robustified, by using these 
results and 

b. developing a new linear programming approach to controller design that exploits 
these results.  

 
These examples should suggest to the reader how to formulate other design questions 
that take advantage of the fundamental results in Real Parametric Robust Control 
Theory. 
 
1. Introduction 
 
In the 1980’s, a new approach to control systems began to emerge. This was based on 
several sharp results on the stability and performance of control systems subject to 
multiple uncertain real parameters. This theory complements the standard control theory 
based on the H∞, H2 l1 and µ optimal control methods, which, by and large, did not deal 
with real parameter uncertainty. The results obtained in this area, which is called Real 
Parametric Robust Control Theory (RPRCT) here, reveal some new and interesting 
extremal properties of control systems that give insight into and aid in the control design 
process. The central results of this theory point out how the mathematics can be used to 
obtain useful information from the point of view of control systems. 
 
We first show how the stability radius in the space of uncertain parameters may be 
calculated. The calculation is exact when these parameters appear linearly or affinely in 
the closed loop characteristic polynomial coefficients. When these coefficients appear 
multilinearly in the characteristic polynomial coefficients, the stability radius may be 
calculated to any degree of accuracy. Several applications of this calculation are 
demonstrated through examples. 
 
Next, we present some extremal results which are very useful for analysis and design. 
These are respectively the Edge Theorem and the Generalized Kharitonov Theorem. 
These results allow us to evaluate the robust stability and performance of various 
systems subject to real parameter uncertainty in a computationally efficient manner. 
Then, how these results can aid in the construction of frequency domain templates is 
shown. Several control system applications of these results are also given where we 
show how classical design techniques can be robustified. This combines the advantages 
of classical and modern control. 
 
2. Notations and Preliminaries 
 
In this section, we introduce some basic notation and terminology that will be used 
throughout. The stability of linear time invariant control systems, is characterized by the 
root locations of the characteristic polynomial. Consider the standard feedback control 
system shown in Figure 1 consisting of a plant and controller connected in a feedback 
loop. 
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Figure 1: A standard feedback system 
 
The plant and controller are assumed to be linear, time invariant dynamic systems with 
respective to real rational transfer function matrices G(s) and C(s). Let p denote a vector 
of physical plant parameters and x a vector of adjustable controller or design 
parameters. Write 
 
 ( ) ( ) ( )1, ,c cC s N s D s−= x x  (1) 
 
 ( ) ( ) ( )1 , ,p pG s D s N s−= p p  (2) 
 
where Nc, Dc, Np and Dp are polynomial matrices in the complex variable s. Now the 
characteristic polynomial of the closed loop system is written as 
 

 ( ) ( ) ( ) ( ) ( ), det , , , ,c p c ps D s D s N s N s⎡ ⎤δ = +⎣ ⎦x,p x p x p
. (3) 

 
Stability of the control system is equivalent to the condition that the roots of the 
characteristic polynomial all lie in a certain prescribed region S of the complex plane. 
For continuous time systems, the stability region S is the open left half, C−, of the 

complex plane and for discrete time systems; it is the open unit disc, that is a circle of 
radius unity, denoted D1, which is centered at the origin. In the control literature, 

stability of continuous time systems or left half plane stability is referred to as Hurwitz 
stability; and stability of discrete time systems or unit circle stability is referred to as 
Schur stability. 
 
To clarify the above notation, a PID controller, for example, has a transfer function 
 

 
( ), I

p D
KC s K K s
s

= + +x
 (4) 

 
where the controller parameter vector is 
 

 p I DK K K⎡ ⎤= ⎣ ⎦x
 (5) 

 
Suppose the plant has transfer function G(s) is written in two alternate parametrized 
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( ) ( )

( )( ) ( )1 0
2

2 1 0

, ,
s a s aG s G s

s s b s b s b
μ − α +

= = =
−β − γ + +1 2p p

. (6) 
 
with 
 

 [ ]μ= α β γ1p  (7) 
 
and 
 

 [ ]0 1 0 1 2a a b b b=2p . (8) 
 
The characteristic polynomial is representable as 
 

 ( ) ( )( ) ( )( )2, .p I Ds s s s s K s K K sμδ = −β − γ + − α + +1p ,x
 (9) 

 
or 
  
( ) ( ) ( )( )2 2

2 1 0 1 0, p I Ds s b s b s b a s a K s K K sδ = + + + + + +2p ,x
. (10) 

 
2.3. Parametric Uncertainty 
 
In general, mathematical models represent approximations to the real world and, 
therefore, it is appropriate to assume that the parameters appearing in such models 
actually lie in a range or interval of numerical values representing the uncertainty 
associated with that parameter. As linear models are supposed to account for the 
nonlinear behavior of the systems, these intervals may be large. 
 
In the example, treated previously, the uncertainty in the plant model may be expressed 
in terms of uncertainty in the gain µ and the pole and zero locations α, β, γ(see Eq. (6)). 
Alternatively, it may be expressed in terms of the transfer function coefficients a0, a1, 
b0, b1, b2. Each of these sets of plant parameters is subject to variation and may be 
assumed to lie in intervals. 
 
In many control systems, the plant parameters may vary over a wide range about a 
nominal value p0. Robust parametric stability refers to the ability of a control system to 
maintain stability despite such large variations. During the design phase, the parameters 
x of a controller are regarded as adjustable variables and robust stability with respect to 
these parameters, also, is desirable in order to allow for adjustments to a nominal design 
to accommodate other design constraints. 
 
If the controller is given, the maximal range of variation of the parameter p, measured in 
a suitable norm, for which closed loop stability is preserved is the parametric stability 
margin. In other words 
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( ){ }0: sup : , stable,x sρ = α δ < αx,p p - p

 (11) 
 
is the parametric stability margin of the system with the controller x. This is a 
quantitative measure of the performance of the controller x. Since ρ represents the 
maximal perturbation, it is indeed a legitimate quantitative measure by which one can 
compare the robustness of two proposed controller designs x1 and x2. This calculation is 
an important aid in analysis and design, much as gain and phase margin, or the value of 
a cost function or performance index is in optimal control. In the next subsection, we 
describe an important computational tool that can be used to evaluate ρ. 
 
2.4. Boundary Crossing and Zero Exclusion 
 
The fundamental notions of boundary crossing and zero exclusion play an important 
role in robust control. They depend on continuity of the roots of the polynomial on a 
parameter. For example, in the space of coefficients of a polynomial of degree n 
consider a path connecting a stable polynomial to an unstable one. Assuming the degree 
remains invariant on this path, that is, the number of roots is preserved, the first unstable 
polynomial encountered on this path must have some roots on the boundary of the 
stability region and the rest of the roots in the interior of the stability region. This result 
is called the Boundary Crossing Theorem. The computational version of this theorem is 
known as the Zero Exclusion Condition and is described as follows. 
 
Consider the family of polynomials δ(s, p) of degree n, where the real parameter p 
ranges over a connected set Ω. Let the stability region in the complex plane be denoted 
as S with boundary ∂S. Suppose it is known that one member of the family is stable. 
Then, a useful technique of verifying robust stability of the family is to ascertain that no 
member of the family has a root on the stability boundary S. This can be done by 
checking that 
 
 ( ) 0,   for all .s s S∗ ∗δ ≠ ∈Ω ∈∂,p p ,  (12) 
 
This can also be written as the zero exclusion condition 
 
 ( )0 ,   for all .s s S∗ ∗∉δ Ω ∈∂,  (13) 
 
The parametric stability margin may be computed by finding the smallest perturbation 
of p0 which results in a root just crossing the boundary, equivalently when the zero 
exclusion just begins to fail. The previous condition can be easily verified when the 
uncertainty set Ω is a box and the parameter p appears linearly or multilinearly in the 
characteristic polynomial coefficients. In the first case, the image set δ(s*, Ω) is itself a 
convex polygon and in the latter case it lies in the convex hull of the image of Ω. In 
these cases, the zero exclusion condition can be verified easily and so can stability 
margins. Motivated by such examples, the majority of robust parametric stability results 
are directed towards the linear and multilinear dependency cases, which fortunately, fit 
many practical applications. 
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The robust controller synthesis problem which is the problem of determining x to 
achieve stability and a prescribed level of parametric stability margin ρ is unfortunately 
as yet unsolved. In an engineering sense, however, many effective techniques exist for 
robust parametric controller design. In particular, the exact calculation of ρx can itself be 
used in an iterative loop to adjust x to robustify the system. In the next section, we 
derive the procedure to compute ρ in some detail. 
 
3. Real Parameter Stability Margin 
 
In this section, we show how the parametric stability margin can be computed in the 
case in which the characteristic polynomial coefficients depend affinely on the uncertain 
parameters. In such cases, we may write 
 

 ( ) ( ) ( ) ( )1 1 l ls a s p a s p b sδ = + + +,p  (14) 
 
where ai(s) and b(s) are real polynomials and the parameters pi are real. Write p for the 
vector of uncertain parameters, p0 the nominal parameter vector and Δp the perturbation 
vector. In other words 
 
 [ ]1 2 lp p p=p  (15) 
 
 0 0 0 0

1 2 lp p p⎡ ⎤= ⎣ ⎦p  (16) 
 
 [ ]0 0 0

1 1 2 2 1 2l l lp p p p p p p p p⎡ ⎤Δ = − − − = Δ Δ Δ⎣ ⎦p . (17) 
 
the characteristic polynomial can be written as  
 

 

( ) ( )
( )

( ) ( )
( )

0 0
1 1 l l

ss

s s a s p a s p
0 Δδ Δδ

δ + Δ = δ + Δ + + Δ
, p

,p p ,p

. (18) 
 
Let s* denote a point on the stability boundary ∂S. For s* ∈ ∂S to be a root of 
( )0sδ + Δ,p p  we must have 

 

 ( ) ( ) ( )0
1 1 0l ls a s p a s p∗ ∗ ∗δ + Δ + + Δ =,p

. (19) 
 
In many instances, it is important to consider weighted perturbations, to account for, 
say, scaling factors, units, or normalization. Letting wi > 0, i = 1, ··· , l denote a set of 
weights rewrite the above equation as follows:’ 
 

 
( ) ( ) ( )10

1 1
1

0l
l l

l

a s a s
s w p w p

w w

∗ ∗
∗δ + Δ + + Δ =,p

. (20) 
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The minimum norm solution of this equation gives us ρ(s*): 
 

 ( ) ( ) ( ) ( )10
1 1

1

inf : 0 .w l
l l

l

a s a s
s s w p w p

w w

∗ ∗
∗ ∗

⎧ ⎫⎪ ⎪ρ = Δ δ + Δ + + Δ =⎨ ⎬
⎪ ⎪⎩ ⎭

p ,p  (21) 

 
The equation corresponding to loss of degree is: 
 

 ( )0 0nδ + Δ =p p
. (22) 

If ain denotes the coefficient of the nth degree term in the polynomial ai(s), i = 1, 2, ··· , l 
the above equation becomes
 

( )

0 0 0
1 1 2 2 1 1 2 2 0

n

n n ln l n n ln la p a p a p a p a p a p
δ

+ + + + Δ + Δ + Δ =
0p . (23) 

 
or, after introducing the weight wi > 0 
 

 ( )

0 0 0 1 2
1 1 2 2 1 1 2 2

1 2

0
n

n n ln
n n ln l l l

l

a a aa p a p a p w p w p w p
w w w

δ

+ + + + Δ + Δ + + Δ =
0p  (24) 

 
The minimum norm wΔp  solution of this equation gives us ρd. 
The Eq. (24) is real and can be rewritten in the form 
 

 
1 1

01

1

.
n

n

n

n ln
n

l b
l l

A
t

w p
a a
w w

w p

Δ⎡ ⎤
⎡ ⎤ ⎢ ⎥ = −δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥Δ⎣ ⎦

 (25) 

 
In Eq. (20), two cases may occur depending on whether s* is real or complex. If s* = sr 
where sr is real, we have the single equation 
 

 ( ) ( )

( )
( )

( )
( )

1 1
1

1

.
r

r

r

r l r
r

l b sl l
A s

t s

w p
a s a s

s
w w

w p

0

Δ⎡ ⎤
⎡ ⎤ ⎢ ⎥ = −δ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎢ ⎥Δ⎣ ⎦

 (26) 

 
Let xr and xi denote the real and imaginary parts of a complex number x, i.e., 
 

      with ,  realr i r ix x jx x x= + . (27) 
 
so that 
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 ( ) ( ) ( )k kr kia s a s ja s∗ ∗ ∗= +
 (28) 

 
and 
 

 ( ) ( ) ( )0 0
r is s j s0 ∗ ∗ ∗δ = δ + δ

. (29) 
 
If s* = sc, where sc is complex, Eq. (20)  is equivalent to two equations which can be 
written as follows: 

 

( ) ( )

( ) ( )

( )
( )

( )
( )

( )

1
1 1 0

1
0

1

1 c
c

c

r c lr c

l r c

i ci c li c
l l

b sl t s
A s

a s a s
w p

w w s
sa s a s

w p
w w

⎡ ⎤
Δ⎡ ⎤⎢ ⎥ ⎡ ⎤−δ⎢ ⎥⎢ ⎥ = ⎢ ⎥⎢ ⎥⎢ ⎥ −δ⎣ ⎦⎢ ⎥Δ⎢ ⎥ ⎣ ⎦

⎢ ⎥⎣ ⎦

. (30) 

 
These equations completely determine the parametric stability margin in any norm. Let 
t*(sc), t*(sr), and nt

∗  denote the minimum norm solutions of Eqs. (30), (26), and (25), 
respectively. Thus, 
 

 ( ) ( )c ct s s∗ = ρ
 (31) 

 

 ( ) ( )r rt s s∗ = ρ
 (32) 

 

 n dt∗ = ρ
. (33) 

 
If any of the above Eqs. (25) - (30) do not have a solution, the corresponding value of 
ρ(·) is set equal to infinity. 
 
Let ∂Sr and ∂Sc denote the real and complex subsets of ∂S: 
 

 r cS S S∂ = ∂ ∪∂ . (34) 
 

 
( ): inf

r r
r rs S

s
∈∂

ρ = ρ
 (35) 

 

 
( ): inf

c c
c cs S

s
∈∂

ρ = ρ
. (36) 

 
Finally, the real parametric stability margin is:  
 

 { }inf , ,r c dρ = ρ ρ ρ . (37) 
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