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Summary 
 
In this chapter we present a brief description of 1  robust control. We first motivate the 
use of the 1norm and then show how it is used in formulating a control problem with 
the objective of minimizing the effect of unknown by bounded disturbances. This leads 
to formulation of the 1  optimal control problem, for which we present a solution using 
the Scaled-Q method. We then address the problem of robust stability and performance 
in the face of structured unmodeled dynamics. Here we provide simple and non-
conservative conditions for robustness that are expressed in terms of the 1  norms of 
the nominal system.  
 
1. Introduction 
 
Feedback control is required only to combat uncertainty. Indeed without uncertainty, 
feedback control has no advantage over open-loop control. The ubiquitous presence of 
feedback as a control strategy in engineering systems and natural systems such as 
biological systems is a reflection of the fact that virtually all systems to be controlled 
have uncertainty in one form or another. This state of affairs is captured succinctly by 
Albert Einstein’s quote “As far as the laws of mathematics refer to reality, they are not 
certain; as far as they are certain, they do not refer to reality”. In engineering systems, it 
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is useful to characterize this uncertainty and to try to quantify its effect on system 
stability and performance. Basing any control design on a model of the physical system 
to be controlled may lead to control designs that are unstable, have poor performance, or 
very sensitive to system variations and are therefore of little practical use. Thus any 
practical control design must be robust to the inevitable uncertainty.  
 
For our purpose we will distinguish between two broad classes of uncertainty: signal 
uncertainty, and model uncertainty. Signal uncertainty refers to those exogenous 
uncertain signals that impact the control system but do not affect its fundamental 
characteristics or its internal structure. They are to be viewed as external inputs to which 
the system will respond, but whose presence does not affect the system dynamics. 
Examples include wind gusts affecting an airplane in flight, or sensor noise that is 
superimposed on a given measured variable. Model uncertainty, on the other hand, 
refers to mismatches between the physical system and the corresponding model. Such 
mismatches could be in the form of unmodeled or poorly modeled dynamics, including 
parameter mismatches.  
 
Characterizing and quantifying uncertainty is the basis for robust control analysis and 
design. When modeling signal uncertainty, it is convenient to consider a class of 
possible signals that affect the control system under consideration. Typically, only a 
bound on the size of these signals is available, but otherwise the exact signal that will 
impact the system is unknown. Choosing the appropriate measure for signal size 
determines the nature of the set of possible disturbances. Likewise, the effect of these 
input signals at a given system output (e.g. errors) may be assessed using an appropriate 
signal measure which may or may not be the same as that used for the input. Signals 
norms are convenient measures of signal size. For instance the 2  norm of a signal is a 
reflection of its energy content. One the other hand the ∞  norm of a signal captures the 
maximum peak that the signal achieves over time. Thus the class of signals 

: { :|| || 1}∞= ≤w wW  represents the set of signals whose magnitude over time remains 
less than or equal to unity. Bounded magnitude disturbances arise very frequently in 
applications, and while the disturbance signal affecting the system may not be known, a 
bound on its magnitude is typically known. As a practical matter, it is therefore 
convenient to model uncertain signals as a set of possible signals, e.g.W . 
 
2. The 1Norm 
 
Once uncertain signals are modeled by sets, one may ask: “what is the worst case effect 
of such signals on a given output of interest?” Here again, we find that an appropriate 
measure of the output signal is needed. There are many possible choices, but norms are 
especially convenient. Moreover in many applications, the maximum amplitude over 
time of a output signal of interest, e.g. error, is just the correct measure to use. For 
example a robot operating in an environment full of obstacles must not have the peak of 
its tracking errors exceed a certain limit. An aircraft control surface must not be allowed 
to saturate and its maximum deflection must be restricted to remain below a certain 
angle. An electric device must not have its input voltage exceed its rated value. So it 
appears that the ∞ norm is a particularly attractive measure for output size. If we let e  
denote the output signal of interest, and if we take W  to represent the uncertain 
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disturbances, then a measure for robustness to these uncertain disturbances is given by 

the quantity: || ||
|| ||sup ∞

∞

e
w w∈W . This has the interpretation of worst-case gain from the 

disturbance input to the error output. Since e  is the output of system T  when the input 
is w , it can be expressed by = Te w . We shall assume that T  is a stable system (i.e. has 
a bounded map); otherwise there will exist unbounded outputs e  corresponding to 
bounded inputs w , and the worst-case gain defined above will be infinite. How does one 
calculate this worst case again, given the system description T ? The answer to this 
questions when T  is a linear time-invariant systems (LTI) involves the system’s 1  
norm, which we address next. 
 
Assuming T  is LTI and is stable, its impulse response sequence T  will be an 1  signal 
and is therefore absolutely summable. In this case 0,e  is related to w  through 
convolution, = ∗e T w . It turns out that worst case disturbance gain is computed in terms 
of T  as follows 
 

|| ||
1|| ||sup || ||∞

∞
=e

ww
T

∈W
 (1)  

 
We now turn to verifying the relation (1). Certainly we have for any nonzero ∞w∈  
 

1
0 0

| ( )( ) | | ( ) ( ) | sup | ( ) | | ( ) | || || || ||
∞

∞
= =

∗ = − ≤ =∑ ∑
k

ii i
T w k T i w k i w i T i T w  (2) 

 

Furthermore, for any N , the sequence Nw  defined by ( ) : sgn( ( ))= −Nw i T N i  for 
0 ≤ ≤i N  and zero otherwise, satisfies || || 1∞=Nw  and  
 

0 0
( )( ) ( ) ( ) | ( ) |

= =
∗ = − =∑ ∑

N N
N N

i i
T w N T i w N i T i  (3) 

 

Thus 0|| || | ( ) |∞ =∗ ≥ ∑N
N iT w T i , which together with equation (2), gives (1). 

 
At this point it is instructive to explore the implication of the relation (1) to the system’s 
robustness. Since T  is the mapping between disturbances and error, the smaller 1|| ||T  is, 
the more attenuated the worst case disturbances will be. Hence, to the extent we can 
modify T  through a design process, the 1  norm of its impulse response must be made 
as small as possible.  
 
3. Robustness to Signal Uncertainty: The 1  Norm Minimization Problem 
 
It is natural to ask how a given input-output map can be influenced through control 
design. We can consider the simplest example of output disturbance rejection. The setup 
appears in figure 1 where w  
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Is an external ∞ disturbance, W is a stable LTI weighting function designed to capture 
the frequency content of the disturbance, and e  is the system output. P and K  are LTI 
systems representing the plant and controller, respectively. The objective is to reject the 
effect of the worst case disturbance on the output, as measured by the ∞ norm. The 

map between w  is e  is given by 1( )−= +T I PK W . From our previous discussion we 

would like 1( )−= +T I PK W  to be stable and have an impulse response T  with an 1  
norm as small as possible. In any practical design, stability of T  is not enough. We 
must enforce the stronger constraint that the entire system interconnection be stable. 
With this in mind, we now have the basic formulation of an 1  optimization problem: 

1min || ||T , subject to 1( ) and−= +T I PK W K stabilizes the system interconnection
 (4) 
 

 
 

Figure 1: Feedback loop with output disturbance 
 
In order to accommodate a more general setup that the one considered here, we can 
consider a generalized problem setup as shown in figure 2. G represent the linear time-
invariant (LTI) discrete-time  
 

 
 

Figure 2: The configuration used in the 1  problem formulation 
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discrete-time generalized plant, K the LTI discrete-time controller, u the control input, 
y the measured output, w the external inputs, and e the controlled output. To simplify 
the exposition, we will assume that , ,w e u , and y  are all scalars. G may be partitioned 
as follows:  
 

11 12

21 22

⎡ ⎤⎡ ⎤ ⎡ ⎤
= ⎢ ⎥⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦⎣ ⎦

G G

G G
e w
y u

 

 
The objective is to find an LTI discrete-time controller which minimizes the 1  norm of 
the impulse response of the function T which maps w  to e .  
 
This task can be made more manageable by using a parameterization of all stabilizing 
controllers in terms of a parameter, 1Q∈ , and then by expressing T  in terms of that 
parameter.  
 
This parameterization described here is the so-called Youla parameterization of all 
stabilizing controllers. This elegant parameterization can be summarized in terms of our 
setup as follows: 
 
Theorem 1 (Youla Parameterization) Let G  be stabilizable from u  and detectable 
from y . Find a coprime factorization of 22Ĝ  as follows: 
 

22 1
ˆˆ ˆˆ ˆ ˆ, 1, , , ,ˆ= − =

NG MA NB M N A B
M

∈ . (5) 

 

Then K stabilizes the system if and only if 
ˆˆ ˆ

ˆ ˆˆ
ˆ −

−
= B MQ

A NQ
K  for some 1Q∈ . Furthermore, 

for any such controller ˆˆ ˆ ˆ= −T H UQ , where 2
11 12 12 12 21ˆ ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ ˆ,= + =H G G BMG U G M G , 

and 1,H U ∈ . 
 
This result allows us to express our optimization problem as follows:  
 

1Optimization Problem: Find
1

1inf || || :γ− ∗ = opt
Q

H U Q
∈

 (6) 

 

where 1,H U ∈ . Hence the search over stabilizing controllers is replaced by a search 
over sequences 1Q∈ . Equally important, T depends in an affine linear manner on the 
parameter : = − ∗Q T H U Q . The controller impulse response K  also depends on the 
choice of the parameterQ . 
 
It will be assumed that U  has finite support, i.e. that Û  is polynomial in 1−z . Otherwise 
if Û  were rational in 1−z , its denominator can be absorbed in Q̂ .  
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