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Summary 
 
Using linear matrix inequalities for analysis and design of control systems is a relatively 
new field of research. Many control problems can be expressed in the form of linear 
matrix inequalities and solved with recently developed efficient convex optimization 
techniques. As an introduction to this area, this articles discusses the design of 
controllers with combined constraints on pole locations, the 2H -norm and the H∞ -
norm of the closed-loop system. This approach is illustrated with a design example. 
 
1. Introduction 
 
It has been known for a long time that linear matrix inequalities play an important role 
in many control engineering problems. Recent developments in numerical algorithms 
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for linear and convex optimization have renewed the interest in this field, and from the 
mid 1990s methods based on linear matrix inequalities (LMI) have become an active 
field of research. 
 
Performance specifications for control systems are often expressed in terms of a 
quadratic performance index (the 2H -norm of a transfer function) or in terms of the 
largest gain across frequency (the H∞ -norm of a transfer function). Whereas the 2H -
norm can be used to handle stochastic aspects and to trade control effort against 
regulation error, constraints on the H∞ -norm can be used to shape the frequency 
response of the loop transfer function and to include robustness specifications when 
system parameters are uncertain. 2H  and H∞  conditions do however not give direct 
control over the shape of the transient response; specifications on damping, rise time 
and settling time are best expressed in terms of pole locations. 
 
In many practical design problems, the above approaches – conditions on the 2H  or 
H∞ -norm and on pole locations – capture different aspects of the design, and it would 
be desirable to be able to use them simultaneously to find the best controller for a given 
problem. A tractable method for doing this was developed only recently: one can use 
linear matrix inequalities to combine these specifications into a single convex 
optimization problem. 
 
This article introduces and illustrates the basic concepts of design methods based on 
linear matrix inequalities. It is organized as follows. In Section 2 a standard form of a 
convex optimization problem – minimization of a linear cost function under LMI 
constraints – is presented for which efficient solvers are available. It is then shown how 
the design specifications mentioned above can be expressed as LMI constraints. 
 
 In Section 3 it is discussed how the standard problem formulation can be used to search 
for controllers that achieve these specifications. In Section 4 a robust control problem is 
solved as a case study that illustrates the approach. Conclusions are drawn Section 5. 
 
2. Design Specifications and Linear Matrix Inequalities 
 
A linear matrix inequality (LMI) has the form 
 

0 1 1( ) N NM p M p M p M= + + + <0 ,  (1) 
 

where 0 1, , , NM M M…  are given symmetric matrices, [ ]1 2
T

Np p p p= …  is a 
column vector of real scalar variables (the decision variables), and the matrix inequality 

( )M p <0  means that the left hand side is negative definite.  
 
An important property of LMIs is that the set of all solutions p is convex. 
 
Linear matrix inequalities can be used as constraints for the minimization problem 
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min subject to ( )T
p

c p M p <0 ,  (2) 

 
where the elements of the vector c  in the linear cost function are weights on the 
individual decision variables. This problem is convex and can be solved by efficient, 
polynomial-time interior-point methods. Several LMI constraints can be combined into 
a single constraint of type (1). For example, 1( )M p <0  and 2( )M p  are equivalent to 
the single LMI constraint 
 

1

2

( ) 0
0 ( )

M p
M p

⎡ ⎤
⎢ ⎥
⎣ ⎦

<0 .  (3) 

The problem (2) is quite general, and a variety of problems can be reduced to this form. 
It has been known for a long time that many control problems can be expressed in this 
way. Already in 1971 the question was raised whether linear matrix inequalities can be 
exploited for numerical purposes in control engineering, but this happened only 20 
years later when available computing power had dramatically increased and after 
efficient interior point methods for solving such problems had been developed in the 
1980s. Control engineers became aware of this development in the early 1990s, standard 
software tools became available in the mid 1990s, and from then on LMI techniques 
developed into an active area of research. As an introduction to this field, in this article 
it is shown how the search for a controller that satisfies design specifications in terms of 
the  2H  and H∞ -norm and pole locations can be expressed in the form of (2). 
 
2.1. Pole Region Assignment  
 

 
 

Figure 1: Desired pole region 
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It is well known that the dynamic properties of a linear, time-invariant system are 
determined by the location of the poles of its transfer function in the complex plane. For 
second order systems, there is a particularly simple relationship between the pole 
location and damping ratio, rise time and settling time. Standard methods are available 
to find a controller that places the poles in specified locations in the complex plane. 
However, it  is not obvious where exactly the poles of the closed-loop system should be 
located to achieve good performance: the required control effort is larger when the poles 
are moved far away from their original locations, and in the presence of transfer 
function zeros these also have an effect on the response. In practice the designer often 
works on specifications that include a minimum damping ratio and a minimum speed of 
response, and it is desired to find the best controller (in terms of a suitable performance 
index) that satisfies these constraints. The constraints can be expressed as a region in the 
complex plane where the closed-loop poles should be located. A typical pole region is 
shown in Figure 1. 
 
The condition that the poles of a system are located within a given region in the 
complex plane can be formulated as an LMI constraint. Here is a simple example: the 
homogenous system 
 

( ) ( )t A t=x x   (4) 
 
is stable if and only if the matrix A  has all eigenvalues in the left half plane, which in 
turn is true if and only if there exists a positive definite, symmetric matrix P  that 
satisfies 
 

TPA AP+ <0 .  (5) 
 
This result was established by the Russian mathematician Lyapunov more than 100 
years ago, and the inequality (5) is referred to as Lyapunov inequality. This inequality is 
linear in the matrix variable P , and one can use efficient LMI solvers to search for 
solutions. It is straightforward to rewrite (5) in the standard form (1) of an LMI. To see 
this, assume that A  is a 2 by 2 matrix and write the symmetric matrix variable P  as  
 

1 2
1 2 3

2 3

1 0 0 1 0 0
0 0 1 0 0 1

p p
P p p p

p p
⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤

= = + +⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 . 

 
Substitution of the right hand side for P  in (5) yields an LMI in the form of (1) with 
three decision variables 1 2,p p and 3p . Available software tools operate directly on 
matrix variables, so that it is usually not necessary to carry out this transformation. 
 
The LMI (5) represents a necessary and sufficient condition for the matrix A  to have all 
eigenvalues in the left half plane. It is possible to generalize this result: one can express 
an arbitrary region D  in the complex plane such as the one shown in Figure 1 (as long 
as it is convex and symmetric about the real axis) in terms of two matrices TL L=  and 
M  as the set of all complex numbers that satisfy an LMI constraint 
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{ }Ts L Ms M s= + +D ∈ : <0 ,  (6) 
 
where s  denotes the complex conjugate of s . Such a region is called and LMI region. 
One can show that a necessary and sufficient condition for a matrix A  to have all 
eigenvalues in D  is the existence of a positive definite, symmetric matrix P  that 
satisfies 

( ) ( )T TL P M AP M AP⊗ + ⊗ + ⊗ <0 .  (7) 
 
The symbol ⊗  stands for the Kronecker product: if M  is a 2 by 2 matrix then  
 

11 12 11 12

21 22 21 22

m m m P m P
M P P

m m m P m P
⎡ ⎤ ⎡ ⎤

⊗ = ⊗ =⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

. 

 

 
 

Figure 2: LMI regions 
 

Thus if P  is also 2 by 2 the Kronecker product is 4 by 4. Inequality (7) is an LMI in the 
matrix variable P . It is easy to see that the Lyapunov inequality (5) is obtained as a 
special case of (7) with 0L =  and 1M =  and D  as the left half plane. One can verify 
that the conic sector shown in Figure 2 is an LMI region with 
 

0 0 sin cos
,

0 0 cos sinc cL M
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

θ θ
θ θ

, 

 
where 090= −θ β , and the vertical strip is an LMI region with  
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2 1 0
,

2 0 1v vL M
α

α
−⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥− ⎣ ⎦⎣ ⎦
l

r

0

0
. 

 
The intersection of both regions is the pole region shown in Figure 1; it can be 
represented as an LMI region by combining the two constraints as in (3) with  
 

0 0
,

0 0
c c

v v

L M
L M

L M
⎡ ⎤ ⎡ ⎤

= =⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦

. 

 
2.2. 2H  Performance 
 
In this and the following section, a state space model 
 

( ) ( ) ( )t A t B t= +x x w  
 

( ) ( ) ( )z t C t D t= +x w   (8) 
 
is considered, where the signal vector ( )tw  represents external inputs such as reference 
input, disturbances or noise, and the signal vector ( )z t  contains fictitious outputs that 
are used to assess performance. 
 
Let ( )G s  denote the transfer function matrix from w  to z . In this subsection, it is 
assumed that A  is stable and 0,D =  thus  
 

1( ) ( )G s C sI A B−= − . 
 
The 2H -norm 2G  of ( )G s  is defined by  
 

2
2 trace

1 ( ) ( )
2

G G j G j dω ω ω∗
−

⎡ ⎤= ⎣ ⎦∫π
∞

∞
, 

 
where G∗  denotes the complex conjugate transpose of .G  An equivalent definition in 
time domain is  
 

2
2 0

trace ( ) ( )TG g t g t dt=∫
∞

, 

 
where ( )g t  is the impulse response matrix of the system. The 2H -norm can be 

interpreted as the root mean square output power 
1

2[ ]TE z z  if the input w  is a vector 

white noise process with autocovariance matrix [ ] .E I=Tww  All control schemes that 
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minimize quadratic performance indices, such as LQG, LQR, and Kalman-Bucy 
filtering, minimize the 2H -norm of a transfer function matrix. In this subsection it is 
shown how a constraint on this norm can be expressed in terms of linear matrix 
inequalities. 
 
The key for this is the well known fact that 
 

2
02 trace TG CP C= , 

 
where 0P  is the controllability Gramian that satisfies  
 

0 0 0T TAP P A BB+ + = . 
 
It is also true that 

2
2 trace TG CPC<  

 
for any P  that satisfies 
 

T TAP PA BB+ + <0   (9) 
 
because 0P P> . This fact is used to express an upper bound on the 2H -norm in the 

form of a linear matrix inequality: 2G <ν  if and only if there exists a matrix P>0  
that satisfies (9) and  
 
trace TCPC 2<ν .  (10) 
 
In Section 3 it is shown how one can search over controllers that result in the closed-
loop system satisfying the above constraint. The system matrices ,A B  and C  will then 
be closed-loop system matrices that contain controller parameters, and the expression 
trace TCPC  will be nonlinear in these parameters. The following equivalent 
formulation of the above result is then used instead. Introduce a new symmetric matrix 
variable W  (which is used as a slack variable), then 2G <ν  if and only if there exist 

symmetric matrices   P  and W  that satisfy (9) and 
 

T

W CP
W

PC P

⎡ ⎤
⎢ ⎥
⎣ ⎦

2>0 and trace <ν .  (11) 

 
To see that (11) is equivalent to (10), note that 
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T

M L

L N

⎡ ⎤
⎢ ⎥
⎣ ⎦

>0 , 

 
where TM M=   and ,TN N=  is equivalent to  
 
N >0    and    1 TM LN L−− >0 . 
This fact is frequently used to convert nonlinear inequalities into LMI form; the term 

1 TM LN L−−  is the Schur complement with respect to N . In the above case, this 

leads to W > TCPC  and consequently to trace W T> traceCPC , from which the 
equivalence of (10) and (11) follows. 
   
2.3. H∞  Performance 
 
Consider again the linear model (8) with A stable and let ( )G s denote the transfer 
function matrix from w to z. The H∞ - norm of ( )G s  is defined as 
 

maxsup ( ( ))G G j
ω
σ ω=∞ , 

 
where max ( )Gσ  denotes the largest singular value of G . For practical purposes, the 
supremum “sup” of a function is the same as its maximum value (it may approach its 
maximum as a limit). The H∞ -norm can be interpreted as the maximum transfer 
function matrix gain on the jω  axis (the largest gain across frequency in the singular 
value norm). One can use constraints on the H∞ -norm to express frequency domain 
specifications such as bandwidth, low frequency gain or roll-off, and to incorporate 
robustness issues into the design. An example for the latter is given in Section 4. 
 
An equivalent definition of the H∞ -norm is  
 

2

0

( ) ( )
sup

( ) ( )

T

T

z t z t dt
G

t t dt≠
=

∫

∫w w w

∞

0
∞ ∞

0

, 

 
where it is assumed that (0) 0=x . Therefore, G ∞  is the maximum possible gain in 

signal energy. This fact can be used to express constraints on the H∞ -norm in terms of 

linear matrix inequalities. From the above it follows that G ∞ < γ  is equivalent to  
 

( )( ) ( ) ( ) ( )Tz t z t t t dt−∫ γ Tw w <0
∞ 2
0
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holding true for all square integrable ( )tw . Now introduce a Lyapunov function 

( )V P= Tx x x  with TP P= >0 . Because (0) ( ) 0,= =∞x x  the constraint 

G ∞ < γ  is then enforced by the existence of a matrix TP P= >0  such that 
 

( ) 1 ( ) ( ) ( ) ( )TdV z t z t t t
dt

+ − <0Tx
w wγ

γ
  (12) 

 
for all ( ), ( );t tx w  this can be seen by integrating (12) from 0t =  to t =∞ . To turn 
(12) into a linear matrix inequality, substitute 
 

( ) ( )T TdV A P PA PB B P
dt

= + + +T T Tx
x x x w w x  

 
and z C D= +x w  in (12) to obtain 
 

1 1

1 1

T T T

T T T

A P PA C C PB C D

B P D C D D

⎡ ⎤+ + + ⎡ ⎤⎢ ⎥⎡ ⎤ ⎢ ⎥⎣ ⎦ ⎢ ⎥+ − + ⎣ ⎦⎣ ⎦

<0T T x
x w

w
γ γ

γ γγΙ
. 

 
For G ∞ < γ  the above must hold for all x  and w , thus the block matrix must be 
negative definite. This condition can be rewritten as 
 

[ ]1T T

T T

A P PA PB C
C D

B P D

⎡ ⎤ ⎡ ⎤+
+⎢ ⎥ ⎢ ⎥

−⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦
<0

γγΙ
 

 
and using the Schur complement (see Section 2) it follows that G ∞ < γ  if there 

exists a positive definite, symmetric matrix P  that satisfies the linear matrix inequality 
 

T T

T T

A P PA PB C

B P D
C D

⎡ ⎤+
⎢ ⎥

−⎢ ⎥
⎢ ⎥−⎢ ⎥⎣ ⎦

<0γΙ
γΙ

.  (13) 

It can be shown that this is not only a sufficient but also a necessary condition for 
G ∞ < γ . 
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