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Summary 
 
This article presents the elements of model reference adaptive control, which refers to a 
particular control procedure for uncertain dynamic systems. The control problem as well 
as the adaptive control problem are described. The use of various models for control, 
including identification model and reference model is presented. The model-following 
in the presence of various inputs is discussed. Using these properties, the problem of 
model reference adaptive control is described. The error model approach for designing 
the requisite controllers is delineated. The solution to the model reference adaptive 
control for linear plants is presented. Its extension to nonlinear systems is briefly 
mentioned. The role of parameter identification and its relation to persistent excitation is 
described. Major developments in the field of model reference adaptive control have 
taken place in the eighties and nineties and have been applied in a number of practical 
control problems with success. 
 
1. Introduction 
 
The aim of control is to keep the relevant outputs of a given dynamic process within 
prescribed limits. Denoting the process to be controlled as a plant, its input and output 
as u and y, respectively, and the aim of control is to keep the error e1 = y − yd, between 
the plant output and a desired output yd within prescribed values. If yd is a constant, the 
control problem is referred to as regulation and if yd is a function of time, the problem is 
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referred to as tracking. In the former case, the value of yd around which the system is to 
be regulated is also referred to as a setpoint or operating point. The goal of control, in 
both cases, is to ensure that the output error e1 is as small as possible, in the presence of 
disturbances and modeling errors, for all time, and that the controlled system is stable. 
Feedback control is one procedure by which regulation and tracking can be 
accomplished in a number of dynamic processes. When the differential equations 
describing the behavior of the plant are linear and known a priori, powerful analytical 
techniques in both time-domain and frequency-domain have been developed. When the 
characteristics of the plant are unknown, both regulation and tracking can be viewed as 
adaptive control problems. 
 
The field of adaptive control, in general, and model reference adaptive control in 
particular, has focused on problems where the uncertainties in the system are 
parametric. Such parametric uncertainties occur due to a variety of reasons on practical 
applications. Typically, system dynamics, which are invariably nonlinear, are often 
linearized to derive the requisite linear controller. The resulting linear model and its 
parameters are therefore dependent on and vary with the operating condition. 
Parameters, also, may vary due to aging, disturbances, or changes in the loading 
conditions. Parameters may be unknown due to approximations made in the modeling 
process. 
 
 In all these cases, a controller is called for that provides a uniformly satisfactory 
performance in the presence of the parametric uncertainties and variations. The adaptive 
approach to this problem is to design a controller with varying parameters, which are 
adjusted in such a way that they adapt to and accommodate the uncertainties and 
variations in the plant to be controlled. By providing such a time-varying solution, the 
exact nature of which is determined by the nature and magnitude of the parametric 
uncertainty, the closed-loop adaptive system seeks to enable a better performance. The 
results that have accrued in the field of adaptive control, over the past three decades, 
have provided a framework within which such time-varying, adaptive controllers can be 
designed to yield stability and robustness in various control tasks. 
 
Model reference adaptive control refers to a particular class of adaptive systems. In this 
class, adaptive controllers are designed by using a reference model to describe the 
desired characteristics of the plant to be controlled. The use of such reference models 
facilitates the analysis of the adaptive system and provides a stability framework.  
 
Two philosophically different approaches exist for synthesizing model reference 
adaptive controllers: indirect control and direct control. In the indirect approach, the 
unknown plant parameters are estimated using a model of the plant before a control 
input is chosen. In the direct approach, an appropriate controller structure is selected and 
its parameters are directly adjusted so that the output error is minimized. For the sake of 
mathematical tractability, the desired output yd needs to be characterized in a suitable 
form, which is generally accomplished by the use of a reference model. Thus, in a 
model reference problem formulation, the indirect approach employs both an 
identification model and a reference model while the direct approach uses a reference 
model only. We describe these models in the following section. 
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2. Dynamic Models 
 
2.4. Identification Model 
 
Mathematical modeling is an indispensable part of all sciences, whether physical, 
biological, or social. One often seeks to characterize the cause and effect relations in an 
observed phenomenon using a model and tune the model parameters so that the 
behavior of the model approximates the observed behavior for all cases of interest. One 
form of quantitative models is mathematical and in the cases of dynamic systems, these 
take the forms of differential or difference equations.  
 
These equations can be obtained either by using physical principles including 
conservation equations of mass, momentum, and energy, or by using input-output data 
that captures the relevant dynamics of a given process.  
 
The model obtained in the latter case is often referred to as an Identification Model, 
since those from the first approach are either not available or too complex for control 
purposes. Often, especially for linear problems, frequency domain methods are used to 
identify the system parameters. When measurement noise is present, the identification 
methods include statistical criteria so as to determine the model that best fits the 
observed data.  
 
Systems identification, which is based on such approaches, is a well-developed area of 
systems theory (see Identification of Linear Systems in Time Domain). The systems 
identification based modeling consists of using the input-output data and a black-box 
approach to derive the model structure and parameters. A typical system identification 
procedure includes:  
 

i. model-structure selection;  
ii. determination of the ‘best’ model in the structure as guided by the data; and  

iii. selection of an appropriate excitation signal that includes a wide range of 
frequencies in order to accurately estimate the model parameters.  

 
The most common of these model structures is linear, with constant coefficients. In this 
case, the excitation signal consists of sufficient number of sinusoids chosen so as to 
excite all of the modes of the system that represent its dominant dynamics. Typical 
linear model structures include ARMAX and N4SID, details of which can be found in 
Identification of Linear Systems in Time Domain. 
 
2.5. Reference Model 
 
The use of a reference model for controls can be traced to aircraft systems. Often, the 
situation therein is such that the controls designer is sufficiently familiar with the plant 
to be controlled and its desired properties. Thus, by choosing the structure and 
parameters of a reference model suitably, its outputs can be used as the desired plant 
response. While in principle such a model can be linear or nonlinear, considerations of 
analytical tractability have made linear reference models more common in practice. 
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2.5.1. Explicit and Implicit Model Following 
 
Two methods that have been studied extensively in this context include explicit and 
implicit model-following methods, both of which include the use of a reference model 
described by the homogeneous differential equation 
 
 m m my A y=  (1) 
 
where the constant matrix m m

mA ×∈  is chosen so that the desired dynamics in terms of 
transient behavior, decoupling of modes, bandwidth, and handling qualities are 
captured. Suppose that the plant to be controlled is described adequately by an nth order 
differential equation with m(m << n) outputs as 
 

 p p p px A x B u= +  (2) 
 

 p p py C x=  . (3) 
 
The reference model in Eq. (1) is chosen so that the output yp follows ym as closely as 
possible. The explicit and implicit model-following methods are based on different 
performance indices of the model-following error yp− ym. In explicit model-following, 
the performance index is of the form 
 

 
( ) ( )

0

T T
e p m e p mI y y Q y y u Ru dt

∞ ⎡ ⎤= − − +⎢ ⎥⎣ ⎦∫  (4) 
 
while in the latter, the performance index implicitly includes the reference model as 
 

 
( ) ( )

0
0

T T
i p m p i p m p iI y A y Q y A y u Ru dt Q

∞ ⎡ ⎤= − − + >⎢ ⎥⎣ ⎦∫  . (5) 
 
In both cases, it can be shown that quadratic optimization theory can be used to 
determine the control input. In the former case, the optimal input has the form 
 

 ( ) ( ) ( )m m p pu t K y t K x t= +  (6) 
 
and in the latter case, 
 

 ( ) ( )p pu t K x t=  . (7) 
 
The structure of the controller can be used in an adaptive situation when the parameters 
of the plant are unknown, though the control parameters have to be estimated to 
compensate for parametric uncertainties. 
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2.6. Reference Model with Inputs 
 
In Eq. (1), the output of the reference model was specified as the output of a 
homogeneous differential equation. A more general formulation of a reference model 
includes external inputs and is of the form 
 

 m m m mx A x B r= +  , (8) 
 

 m m my C x=  (9) 
 
where Am is a stable n×n matrix with constant elements, Bm, and Cm are constant 
matrices with appropriate dimensions, and r is an arbitrary continuous uniformly 
bounded input. The goal of the control input u into the plant in Eq. (3) so that the output 
yp(t) tracks the output ym(t) as closely as possible. In this case, the reference input r 
along with the model in Eqs. (8) and (9) with the parameters {Am, Bm, Cm} determines 
the output of the reference model.  
 
The introduction of the reference inputs significantly increases the class of desired 
trajectories that can be represented by a reference model. For a perfect model following 
to occur, the differential equations governing yp and ym as well as the initial conditions 
yp(t) and ym(t) have to be identical. This imposes restrictive conditions on the matrices 
Ap, Bp, Am, and Bm, in terms of their canonical forms. It has been shown by Erzberger 
that the requisite control input in this case is of the form 
 

 ( ) ( ) ( ) ( )p p m m ru t K x t K x t K r t= + +  . (10) 
 
In an adaptive situation, it is more reasonable to have the objective of asymptotic model 
following where yp(t) is desired to follow ym(t) as t → ∞. The problem in this case is to 
determine the conditions under which this can be achieved amidst parametric 
uncertainties. 
 
- 
- 
- 
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