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Summary 
 
A modern approach to self-tuning and adaptive control is to couple a robust parameter 
estimator to a robust control algorithm.  For this purpose long-range prediction based 
control schemes are known to have advantageous properties for coping with sensitive 
dead-time estimation, nonminimum-phase and unstable systems. In this work the special 
case of long-range prediction based  
 
Generalized Predictive control (GPC) is used to point out useful robustness properties 
which are determined by the cost-function parameters and a pre-specified observer 
polynomial 1( ).T q−  The GPC method shares the application properties of other well 
known Model-Based Predictive Control (MBPC) laws such as Identification and 
Command (IDCOM) and Dynamic Matrix Control (DMC) and can therefore represent a 
wide class of linear predictive controllers.  
 
The results are particularly simple for mean-level and state dead-beat objectives. It is 
shown that the simplest choice of horizons (giving ‘mean-level’ control) provides dead-
beat disturbance rejection. For adaptive control a Recursive-Least-Squares (RLS) 
estimator is considered for generating the model parameters. 
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1. Introduction 
 
Most nontrivial control problems involve uncertainty. Signals are corrupted by sensor 
noise and by quantization in analog to digital converters. The plant output depends not 
only on the control input but also on load-disturbances which are mostly unmeasurable 
and against which the control law has to regulate. Nonlinearities such as saturation, 
backlash and stiction in the actuator can affect the controlled response yet are difficult 
to quantify. Moreover, the stability and performance of the closed-loop depends 
crucially on one major source of uncertainty – the dynamic behavior of the plant itself. 
The traditional solution for the vast majority of loops in industry has been to use 
standard manually-tuned three-term regulators. Good results are obtainable from PID 
algorithms provided that the plant engineer is familiar with tuning methods, though the 
procedure can be time consuming, and retuning may be necessary if the dynamics 
change. 
 
The advent of microprocessors in the ’70s stimulated interest in self-tuning algorithms 
in which the controller settings are adjusted automatically, based on models of process 
behavior deduced from observations of input/output data. The conceptual structure of a 
self-tuner is shown in Fig 1. Two time-scales are in operation: the fast feedback 
controller (generally linear) and a slow outer ‘updating’ loop which provides the plant 
model and deduces the controller settings via an analytic design procedure so that: an 
algorithm is said to have the self-tuning property if, as the number of samples 
approaches infinity, the controller parameters tend to those corresponding to an exactly 
known plant model. 
 

 
 

Figure 1: Structure of a general self-tuning controller 
 
Self-tuning theory generally assumes a constant plant; in practice the parameter 
estimator can be designed to update slowly the model parameters, leading to adaptive 
control. 
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Many commercial self-tuners simply adjust PID settings, but we are concerned here 
with a more general-purpose law which is in some sense optimal when used with 
processes which have complex (possibly time-varying) dynamics such as dead-time and 
which can include tuned feed-forward terms to cope with measurable load-disturbances. 
These self-tuners may have several design parameters which can be chosen on-site to 
tailor the loop behavior according to the plant and design objectives. It is said that these 
controllers have design-oriented knobs as the user is prescribing the character of the 
closed-loop rather than the I,K T  and DT  of the PID law. This operational flexibility 
carries with it the burden of a significant number of prior parameters, so one objective is 
to ensure either that their selection is easily understood or that the suboptimal 
performance resulting from bad choices is still acceptable. 
 
Early self-tuning approaches such as the Minimum Variance (MV) and Generalized 
Minimum Variance (GMV) methods were based on short-range prediction of the plant 
output at a single future instant taking place at the end of the prediction horizon. The 
length of the prediction horizon was given by the plant’s dead-time, and the control was 
chosen so as to make the projected output equal to the set-point. These are special types 
of Smith predictor for which the future disturbance at the same time instant is also 
predicted. Coupled with a recursive least-squares estimator the designs are simple and 
effective. Their drawback however is the relative sensitivity to incorrectly assumed 
values of dead-time; with MV in particular the sample interval needs to be chosen with 
care to avoid instability. Other classical adaptive algorithms have been shown to be 
sensitive to incorrectly selected model order (i.e. Pole-placement self-tuners) or lack 
robustness when operating a system with nonminimum-phase behavior. 
 
Because of the inability of classical adaptive control schemes to cope with many 
applications, adaptive control schemes based on long-range predictions have been 
introduced. The essential advantage of long-range predictive controllers is that they 
perform stable control of the majority of real processes and can cope with parameter 
uncertainty problems using advanced adaptive parameter adjusting techniques. Is 
specific the plant can be: 

 
1. a nonminimum-phase plant (most continuous-time transfer functions tend to 

exhibit discrete-time zeros outside the unit circle when sampling rate is fast 
enough) 

2. a plant with variable or unknown dead-time 
3. a plant with unknown order 
4. an open-loop unstable plant or plant with badly-damped poles. 

 
Methods based on long-range predictions include the following: 
 

• Generalized Predictive Control (GPC) 
• Dynamic Matrix Control (DMC) 
• IDentification and COMmand (IDCOM) 
• Extended Horizon Adaptive Control (EHAC) 
• Extended Predictive Self-Adaptive Control (EPSAC) 
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• Multistep Multivariable Adaptive Control (MUSMAR) 
• MUltipredictor Receding Horizon Adaptive Control (MURHAC) 

 
All these methods have certain features in common which distinguish them from 
previous design philosophies. The solution of a finite horizon optimization problem at 
each time instant is implemented in a receding horizon way (will be defined later) and 
the provision of a small number of design parameters allows to select appropriate 
closed-loop process dynamics. Due to the high quality control performances and very 
short response time that are often required in modern industrial technology Long-Range 
Model Based Predictive Control (LRPC/MBPC) implemented on demanding 
applications have been proven to outperform the classical control schemes in many 
cases. The importance of LRPC/MBPC is that not only can it handle Multiple-
Input/Multiple-Output (MIMO) problems based on experimentally obtained models but 
also treat the critical matter of input and output constraints in a uniform manner. Many 
LRPC/MBPC schemes have been applied successfully in process control, electric 
drives, aircraft and missile control, metallurgical processes, satellite attitude control and 
navigational course control of ships, just to mention a few practical examples. 
 
Chemical engineers often obtain dynamic information from step tests, or sometimes 
estimate the related pulse-response model using pseudo-random test signals and cross-
correlation. Such models were used for the first time in predictive control in the mid 
‘60s, and at the end of the ‘70s and were effectively implemented on demanding 
applications. Models based on general difference-equation rather than a step-response 
model have been used in many MBPC approaches, however the main design objectives 
of both approaches are very similar, although approached via a different historical route. 
In this article the Dynamic Matrix Control (DMC) and Generalized Predictive control 
(GPC) methods, based on a step-response model and a difference-equation model 
respectively, will be used for a comparative analysis of important aspects involved in 
applying adaptive LRPC/MBPC schemes. The GPC uses an observer polynomial in its 
predictions to get ‘load-disturbance tailoring’ and increased robustness. This high 
flexibility of the GPC scheme will be used to point out the basic idea and important 
design-options this control scheme offers to the control engineer. Differences between 
GPC and DMC will be highlighted and the effectiveness of the adaptive MBPC design 
procedure is demonstrated using simulation results. It should be noted that this paper 
only considers single input-output systems, but most results can be extended for the 
multiple input-output system case. 
 
The structure of this work is as follows: Important aspects of selecting and using 
different models for predictive control are discussed in Section  2. Section 3 introduces 
the main idea behind GPC, flexibility in its design and load-disturbance responses. In 
Section 4 influences of modeling errors are investigated in a robustness analysis. Self-
tuning aspects of combining MBPC with a parameter estimator are dealt with in Section 
5. The work concludes with some final remarks. 
 
2. System models and long-range prediction 
 
The idea behind MBPC is based on predicting the system response subject to a future 
control strategy to be optimized. For this purpose a model must be accessible which can 
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characterize the plant behavior in terms of a finite set of parameters. The major 
difference between the various MBPC approaches arises from the properties of models 
selected for each case. Proper choice of model structure is vitally important in the 
design of practical self-tuners. In particular it is essential to capture dead-time and 
disturbance dynamics, as plants are characterized by: 
 
nonlinearity: models are generally local-linearizations 
 
load disturbances: often random steps or Brownian motion 
 
complex dynamics: there may be high-frequency modes which are not represented in a 
low-order model and can influence the performance of adaptive controllers. 
 
A model can be thought of having two aspects: its structure M  and its actual 
parameter set θ . The derivation and implementation of a LRPC/MBPC algorithm 
depends on the assumed structure; a ‘good’ design gives satisfactory answers to the 
following questions: 
 

• Can M  represent a very general class of plants? For example, can it deal 
with dead-time, unstable, lightly-damped, high-order systems simply by 
changes in parameter values? 

• Is the number of parameters minimal with M still giving adequate 
predictions? 

• Can prior knowledge be easily incorporated? 
• Is there a realistic model of load-disturbances? 

 
A good model will give better performance; for example the assumption of constant 
non-zero or of Brownian-motion disturbances automatically leads to the imposition of 
an integrator into the control law. 
 
Many model structures are used in MBPC: impulse-response, step-response, state-space, 
transfer function etc.; we shall derive some ideas using a general infinite impulse-
response before specializing to a model based on difference-equations used by GPC. 
 
2.1. General long-range prediction models 
 
Consider the general linear model assumed about the plant: 
 

1 1( ) ( ) ( ) ( ) ( ),y t M q u t N q t− −= + ξ   (1) 
 
where 1q−  is the backward-shift operator and ,M N  are infinite polynomials giving the 
control and disturbance dynamics. The disturbance is hence described as an 
uncorrelated sequence { ( )}tξ  driving the transfer-function 1( ).N q−  To obtain a j -step-
ahead predictor we first decompose N  as: 
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1 1 1( ) ( ) ( ),j
j jN q N q q N q− ∗ − − −= +   (2) 

 
so that the future output can be written: 
 

1 1 1( ) ( ) ( ) ( ) ( ) ( ) ( ).j
j jy t j q M q u t N q t j N q t− ∗ − −+ = + + +ξ ξ  

 
The first disturbance term is comprised of only future uncorrelated components, 
whereas the second term involves ( )tξ  which can be reconstructed, using Eq.(1), from 
known data by: 
 

1

1
( ) ( ) ( )( ) ,

( )
y t M q u tt

N q

−

−
−

=ξ   (3) 

 
so that a minimum-variance predictor is: 
 

1
1 1

1
( ) ( ) ( )ˆ( ) ( ) ( ) ( )

( )j
y t M q u ty t j t M q u t j N q

N q

−
− −

−
−

+ = + +  (4) 

 
1 1

1
1 1

( ) ( )
( ) ( ) ( ).

( ) ( )
j jN q N q

M q u t j y t
N q N q

∗ − −
−

− −= + +   (5) 

 
Note that the assumption of a nontrivial disturbance model leads to the use of output 
measurements as well as control signals in the prediction. From the definition of jN  

and jN∗  and dividing Eq.(2) by N  we have: 
 

1 1

1 1

( ) ( )
1 .

( ) ( )
j jjN q N q

q
N q N q

∗ − −
−

− −= +   (6) 

 
The second term of the RHS has a leading shift operation of jq−  which implies (by 

comparing powers of iq−  on each side) that the first j  terms of the infinite polynomial 

/jN N∗  are 11 0 .q−+ +  This means that the component of output prediction dependent 

on future controls is not affected by the particular 1( )N q−  assumed. The noise model 
only affects the prediction of the plant which depends on initial conditions (free 
response) and not on possible future controls. 
 
2.2. Dynamic matrix control prediction model 
 
Consider the use of the above prediction equation for the DMC case which has a 
Brownian motion (random step) noise model: 
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1 ( )( ) ( ) ( ) ,ty t M q u t−= +
Δ
ξ   (7) 

where Δ   is the differencing operator 11 .q−−  Expansion into polynomial form gives: 
 

1 1 2( ) 1N q q q− − −= + + +  
 
which according to Eq.(2) results in  
 

1 1 2( ) 1jN q q q− − −= + + +  and   1 1 2 1( ) 1 .j
jN q q q q∗ − − − − += + + + +  

 
Taking  
 

1

1

( )
1

( )
jN q

N q

−

− =   and    
1 1 2 1

1 1 2

( ) 1 1
( ) 1

j
j jN q q q q q

N q q q

∗ − − − − +
−

− − −
+ + + +

= = −
+ + +

 

 
into account the optimal DMC predictor is: 
 

1 1ˆ( ) ( ) ( ) ( ) ( ) ( ).y t j t M q u t j M q u t y t− −+ = + − +  
 
It is interesting to note that ( ) ( )y t Mu t−  is the difference between the actual output 
measurement and the predicted outcome from past inputs. The DMC equations are 
usually described in terms of control ‘moves’ ( )u tΔ  and a step-response model 1( ).S q−  
This can be achieved by using the relations: 
 

1i i is s m−= +    and    ( ) ( ) ( 1)u t u t u t= + − +Δ Δ  

to give: 

0 1

0 1

ˆ( ) ( ) ( ) ( 1)
( ) ( ) ( 1) .j

y t j t y t s u t j s u t j
s u t s u t s u t

+ = + Δ + + Δ + − +

+ Δ + − Δ − Δ − −
 

 
Noting that 0 0s =  for proper plants and that rs K=  where K  is the dc plant gain for r  
greater than the settling time ,sN  the potentially infinite series in past values of 

( )u t iΔ −  become just a finite sum so that: 
 

1 1
ˆ( ) ( ) ( ) ( ) ( ).

sNj

i i j i
i i

y t j t s u t j i y t s s u t i+
= =

+ = Δ + − + + − Δ −∑ ∑  (8) 

 
The first part of the RHS is the forced response due to a set of hypothetical future 
controls, the other terms being the free response determined by the model structure and 
currently available data. 
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