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Summary  
 
This chapter describes some results in stochastic adaptive control. Stochastic adaptive 
control is the control of an unknown stochastic system. To identify an unknown linear 
stochastic system in discrete or continuous time, a weighted least squares algorithm is 
used that converges to a random variable and a modification of this family of estimates 
converges to the true parameter value.  
 
An adaptive pole placement problem is solved to stabilize an unknown ARMAX 
system. A linear quadratic Gaussian control problem is solved for an unknown linear 
stochastic system by using the weighted least squares estimates for a certainty 
equivalence control.  
 
This control law achieves the optimal cost for the known system. An adaptive control 
problem for a finite Markov chain is solved. Some generalizations of adaptive control 
problems are described.  
 
1. Introduction 
 
Stochastic adaptive control is the control of a partially known or completely unknown 
stochastic system. A physical system is often subject to perturbations and a model for a 
physical system is only an approximation so there are unmodeled dynamics.  
 
These perturbations or unmodeled dynamics are often described by noise entering the 
model. For physical systems, it is often important or even necessary to control the 
system to have some desirable behavior. Typically in the mathematical modeling of a 
physical system there are unknown or unspecified parameters. The control of an 
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incompletely known stochastic system is a problem of stochastic adaptive control. The 
fact that a mathematical model is stochastic allows for the representation of these 
perturbations or unmodeled dynamics.  
 
The control of an incompletely known system, that is adaptive control, is a fundamental 
problem in control theory; often perturbations or unmodeled dynamics of a system 
require a stochastic model. These problems of stochastic adaptive control occur in a 
broad cross-section of the control of physical systems.  
 
Some well known applications are guidance and control systems, fault diagnosis, 
telecommunications, medicine, thermal processes, electric power, finance, process and 
production control and traffic systems (see Automation and Control Applications). 
 
In this chapter, some distinct stochastic adaptive control problems are described. 
Initially the adaptive control of an ARMAX model is given. An ARMAX 
(autoregressive moving average with exogenous inputs) model is a discrete time linear 
stochastic system. 
 
 It is assumed that the parameters of this model are unknown. A weighted least squares 
algorithm is used to estimate the unknown parameters. This family of estimates 
converges and with an additional attenuating excitation added to the control the family 
of estimates is strongly consistent. 
 
 An adaptive pole placement procedure is used to stabilize the unknown system. For a 
linear quadratic Gaussian control problem for this unknown ARMAX system, a 
certainty equivalence control achieves the optimal cost for the known system. 
 
An adaptive control problem is solved for a continuous time linear stochastic system 
described by a stochastic differential equation where the parameter matrices are 
unknown. A weighted least squares algorithm in continuous time converges and with an 
additional attenuating excitation added to the control the family of estimates is strongly 
consistent, that is, converges to the true parameter value.  
 
For a linear quadratic Gaussian control problem for this unknown linear stochastic 
system, a lagged certainty equivalence control achieves the optimal cost for the known 
system. Some generalizations of adaptive control to nonlinear systems and stochastic 
partial differential equations are briefly described. 
 
2. Adaptive control of Markov Chains 
 
An elementary and important family of stochastic control problems is the control of 
finite state Markov chains. An early topic in stochastic adaptive control was the 
adaptive control of these finite state Markov chains.  
 
A Markov chain is described by its transition probabilities and for the adaptive control 
problem it is assumed that the transition probabilities are controlled and that they 
depend on an unknown parameter.  
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LetS be a finite state space for the Markov chain and U be the finite set of control 
actions. For each parameter , ( , , , )p i j uα α∈�A is the probability of making a 
transition from state i to state j using the control u . The state of the system at time 
, tt x , is observed for all t and the control tu U∈ is chosen based on tx , that is, 

( , )t tu x=φ α . Since α is unknown, it is necessary to estimate it at each t , which is 
denoted ˆ tα , and the adaptive control is ˆ( , )t t tu x=φ α . 
 
The unknown parameter is estimated by the maximum likelihood method so that 
ˆ tα satisfies  
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for allα∈A . If the likelihood function is maximized at more than one value of α , 
then a unique value is chosen according to some fixed priority ordering. 
 
The following assumptions are used 
 
A1. A is a compact set  
 
A2. There is an 0>ε such that for each pair ( , )i j either ( , , , )p i j u >α ε for all 
( ,u α)or ( , , , ) 0p i j u =α for all ( , )u α . 
 
A3. For each pair ( , )i j , there is a sequence 0 1, ,..., ri i i such that for all 

1( , ), ( , , , ) 0 1,..., 1s su p i i u s r− > = +α α where 0i i= and 1ri j+ = . 
 
The assumption A2 guarantees that the probability measures 

0 0 0 1( ,..., | , ,..., , )n nP x x x u u − α for α∈A are mutually absolutely continuous. The 
assumption A3 guarantees that the Markov chain generated by the transition 
probabilities ( , , ( , ), )p i j iα αφ has a single ergodic class, that is, all states 
communicate with all states.  
 
The following theorem verifies the convergence of the family of maximum likelihood 
estimates.  
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Theorem 1 If A1 and A3 are satisfied and ˆ( , )t tα ∈ is the family of maximum 

likelihood estimates (1), then there is a random variable ∗α and a finite random time 
T such that  
 

1. ˆ t
∗=α α  a.s.(almost surely) for t T≥  

 
2. ( , , ( , ), ) ( , , ( , ), )p i j i p i j i∗ ∗ ∗=φ φ 0α α α α  a.s. for all ,i j∈S where 0α is 

the true parameter value. 
 
To obtain strong consistency of the family of maximum likelihood estimates another 
assumption is introduced 
A4. If , ′α α ∈A and ′≠α α , then there is an i∈S such that  
 
[ ( ,1, , ),..., ( , , , ] [ ( ,1, , ),..., ( , , , )]p i u p i r u p i u p i r u′ ′≠α α) α α  
 
for each u U∈ . 
 
This assumption means that the transition vectors are distinct and is sometimes called an 
identifiability condition. The contrast function for the maximum likelihood estimates is  
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The following theorem provides strong consistency of the family of maximum 
likelihood estimates and optimality of an adaptive control. 
 
Theorem 2 If A1-A4 are satisfied, ( , , , ), ( , , ), ( , )p i j u c i j u iα αφ and ( , , )f i u α are 
continuous functions, ( , , , ) 0p i j u >α for all , , ,i j uα then 
 

(i) For any control 
 

lim ˆ tt→∞
= 0α α     a.s. 

 
(ii) If 0 0ˆ( , ) ( , ,..., )t i ttx x u x=∏φ α and 0( , )txφ α is an optimal 

control, then  
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where ˆ( , 0)t t ≥α is the family of maximum likelihood estimates and ˆ( , )t t tu x=φ α . 
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