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Summary 
 
MBPC is a feedback-control methodology suitable to enforce efficiently hard constraints 
on the variables of the controlled system. It is shown that the method hinges upon a 
constrained open-loop optimal control problem along with the adoption of the so-called 
receding-horizon control strategy. In the important case of time-invariant linear saturated 
ANCBI systems, MBPC algorithms can be devised with the property of ensuring global 
feasibility/stability. Considerations on how to deal with disturbances and model 
uncertainties are also given. A presentation of a simplified form of MBPC, viz. the PCG, 
is finally discussed. 
 
1. Introduction 
 
Model-Based Predictive Control (MBPC) is conceptually a natural method for generating 
feedback control actions for linear and nonlinear plants subject to pointwise-in-time input 
and/or state-related constraints. A human being, for instance, while driving a vehicle, 
generates steering-wheel commands, by forecasting or predicting over a finite 
time-horizon, the (possible) vehicle state-evolutions, on the basis of vehicle current state 
and dynamics, and a virtual or potential steering-wheel command sequence.  
 
Then, one, among such sequences, is sorted out, which fulfills safety constraints and 
meets performance requirements. Only a short initial portion of such a sequence is 
applied by the driver to the steering wheel, while its remaining part is discarded. After 
such an initial portion is applied, the driver repeats the whole operation by restarting 
predictions over a or receded time-horizon from the updated vehicle state as determined 
by the applied command. MBPC complies with the same logical scheme: the control 
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sequence is computed by solving online, over a finite control horizon, an open-loop 
optimal control problem, given the plant dynamical model and current state. Though this 
computation hinges upon an open-loop control problem, MBPC yields a feedback-control 
action. Indeed, similarly to the driver behavior, in a discrete-time setting, only the first 
control of the open-loop control sequence is applied to the plant, and, according to the 
receding horizon control philosophy, the whole optimization cycle is repeated at the 
subsequent time-instant, based on the new plant-state.  
 
Because it involves a control horizon made up by only a finite number of time-steps, 
MBPC can be often calculated online, by existing optimization routines, so as to 
minimize a performance index, in the presence of hard constraints on the time evolutions 
of input and/or state. MBPC ability of handling constraints is of paramount importance 
whenever constraints are part of the control design specifications. In fact, constraints are 
typically present in applications, as they stem from actuators’ saturations and/or physical, 
safety or economical requirements. Despite the importance of constraints, there is a 
shortage of control methods for handling them effectively.  
 
The main reason for the interest of control engineers in MBPC is therefore its ability to 
systematically and effectively handle hard constraints. An important observation in this 
connection is that, in contrast to MBPC, in feedback-control systems of more traditional 
type, e.g., LQG or H∞ control, constraints are indirectly enforced, by imposing, whenever 
possible, a conservative behavior at a performance-degradation expense. Other instances 
where MBPC can be advantageously used comprise unconstrained plants for which 
offline computation of a control law is a difficult task as compared with online 
computations via receding-horizon control.  
 
MBPC appears to have been proposed independently by several people, more or less 
simultaneously. It is not an easy matter to trace back its origin by looking at dates of 
related publications as the pioneers were mostly control practitioners who implemented 
MBPC well before the first publications appeared in the late seventies/early eighties. The 
early motivations for proposing MBPC were essentially twofold. On one side, the 
emphasis was on a control methodology, which would be applied to problems for which 
standard industrial controllers, e.g., PID, were inadequate.  
 
Such a control methodology had to be based on intuitive concepts and offer ease of tuning. 
Within this context, constraint handling and optimality were not the main goals. On the 
other side, the emphasis was on an optimal plant operation under constraints, and control 
signal computations by repeatedly solving in real-time linear programming problems. To 
what nowadays we call MBPC, early publications gave various names, e.g., Dynamic 
Matrix Control, Model Predictive Heuristic Control, Receding Horizon Feedback 
Control, Heuristically Enhanced Feedback Control. A few patents related to early MBPC 
techniques were released starting from 1976. 
 
Among the advanced control methodologies, MBPC is the one, which has made the most 
significant impact on industrial control engineering. So far, it has been applied mainly in 
the petrochemical industry, even if it is being increasingly introduced in other sectors of 
the process industry. The main reason for its success in these applications are:  
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1. The processes are typically slow so that there is enough time for the online 
required computations;  

2. MBPC can take into account actuator limitations;  
3. Relatively to conventional control, MBPC allows operation closer to 

constraints, which often yields more profitable production.  
 
The success of MBPC may even become more significant in the future as an increasing 
use of nonlinear dynamic models is taking place in the process industry. These models are 
obtained by mathematically describing the chemical and physical transformations 
occurring inside the process. Then, there is a clear potential for future synergy of 
nonlinear models with MBPC in that nonlinear models can provide more accurate 
predictions of process behavior in a nonlinear regime. 
 
Significant use of MBPC has also been made in adaptive control during the last two 
decades. Adaptive control of non-minimum phase plants required in fact the use of 
underlying control laws more sophisticated than minimum-variance control but simple 
enough to be synthesized in real-time on the grounds of continuously updated plant 
identified models. Remarkable examples of MBPC use in adaptive control are GPC and 
MUSMAR, both developed during the eighties. 
 
The presentation of MBPC given hereafter aims at enlightening the main features of the 
approach, related well-established feasibility/stability constructive arguments, and 
current open problems. Consideration will be also given to the command governor, a 
specific control architecture of practical interest, which, though introduced independently 
of MBPC, in its recent developments has taken advantage of using conceptual tools of 
predictive control. For more specialized topics, the reader is referred to the three article 
level contributions dealing with MBPC, viz.:“MBPC for Linear Systems”; “MBPC for 
Nonlinear Systems”; and “Adaptive Predictive Control”.  
 
The presentation is organized as follows: Section 0 sets up the general ingredients of the 
constrained open-loop optimal control problem underlying any MBPC scheme. Section 0 
describes the earliest and simplest form of a stabilizing MBPC algorithm. Section Error! 
Reference source not found. introduces a convenient form of a set-membership 
(ellipsoidal) terminal state-constraint devised so as to improve in terms of feasibility the 
algorithm of Section Error! Reference source not found..  
 
Section Error! Reference source not found. extends the scheme of Section Error! 
Reference source not found. by considering a state-dependent ellipsoidal constraint, 
which allows one to get global feasibility/stability whenever such a property is 
achievable in principle. Section Error! Reference source not found. describes how to 
deal with constant disturbances and nonzero setpoints, as well as model uncertainties of 
polytopic type. Section Error! Reference source not found. describes predictive 
reference governors. In Section Error! Reference source not found., a brief assessment 
of the current status of MBPC concludes the contribution. 
 
2. The Constrained Open-Loop Optimal Control (COLOC) Problem 
 
In MBPC, the system to be controlled (plant) is usually represented by an ordinary 
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differential equation. However, as the control is normally piecewise constant, the plant is 
most of the times described in terms of a difference equation 
 
 ( 1) ( ( ), ( ))x k x k u kϕ+ =  (1) 
 
 ( ) ( ( ))y k x kη=  (2) 
 
where x(k) ∈ n  is the state at time k, u(k) ∈ m  the input, y(k) ∈ p  a state-related 
vector connected to performance requirements (see Eq. (6) below), ϕ  is assumed to be 
continuous at the origin with (ϕ (0X, 0U) = 0X) and η (0X) = 0Y. The plant input and state 
sequences are required to satisfy the constraints 
 
 ( )u k U∈  (3) 
 
 ( )x k X∈  (4) 
 
where, usually, U is a convex and compact subset of m , and X is a convex and closed 
subset of n , both sets containing the origin in their interior. For the event (x, t) (viz., for 
state x at time t), the cost is defined by 
 

 
1

( , , ) ( ( ), ( )) ( ( ))
t N

k t
J x t l x k u k L x t N

+ −

=

= + +∑u  (5) 

 
where u := {u(t), u(t + 1), …, u(t + N − 1)} and x(k) = xu(k; (x, t)), the latter notation 
denoting the state at time k resulting from state x at time t ≤ k and a control sequence u. 
The terminal time t + N increases with time t and, consequently, is referred to as a 
receding horizon. Various choices for the instantaneous loss l and the terminal loss L are 
in principle possible. However, according to the usual MBPC choice, hereafter the loss 
functions will be taken to be quadratic 
 

 
2 2

2

( ( ), ( )) : || ( ) || || ( ) ||

( ( )) : || ( ) ||
y u

N

l x k u k y k u k

L x t N x t N
ψ ψ

ψ

⎫= + ⎪
⎬

+ = + ⎪⎭
 (6) 

 
where 2|| || : 'v v vψ ψ= , the prime denotes transpose, ψ y = 'yψ  > 0, ψ u= 'uψ  > 0 and ψ N= 

'Nψ  ≥ 0. In general, a terminal-state constraint 
 
 ( ) Nx t N X+ ∈  (7) 
 
is also imposed.  
 
At the event (x, t), the COLOC problem P (x, t) is to find, provided it exists, the optimal 
(virtual) control sequence 
 
 ( , ) : { ( ; ( , )), ( 1; ( , )), ..., ( 1; ( , ))}x t u t x t u t x t u t N x t= + + −u  (8) 
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which minimizes J(x, t, u) subject to the control, state and terminal-state constraints, and 
yields the value function 
 ( , ) : ( , , ( , ))V x t J x t x t= u  (9) 
 
According to the receding-horizon mode of operation, only the first control u°(t; (x, t)) is 
applied to the plant input at time t. In such a way, a feedback-control action is obtained 
 
 ( ) ( , ) : ( ; ( , ))u t c x t u t x t= =  (10) 
Since ϕ (·,·), η (·), l(·,·) and L(·) are time-invariant, problems P(x, t) are time-invariant in 
that  
 
V(x, t) = V (x, 0) and c(x, t) = c(x, 0). Consequently, it suffices at each event (x, t) to solve  
PN(x) := P (x, 0). Problem PN(x) is therefore as follows: 
 
 ( ) : ( ) min{ ( , ) | ( )}N N N NP x V x J x U x= ∈

u
u u  (11) 

 

 
1

0
( , ) : ( ( ), ( )) ( ( ))

N

N
k

J x l x k u k L x N
−

=

= +∑u  (12) 

 
where u = {u(0), u(1), …, u(N − 1)}, x(k) = xu(k; (x, 0)) and UN(x) is the set of feasible 
control sequences, viz. sequences satisfying the control, state and terminal-state 
constraints. Because N is finite, the minimum exists provided that ϕ (·,·) and h(·) are 
continuous, U compact, X and XN closed, and UN(x) non-empty. At the event (x, t), PN(x) 
is solved yielding the optimizing (virtual) control sequence 
 

( ) { (0; ), (1; ), ..., ( 1; )}x u x u x u N x= −u  (13) 
 
the optimal (virtual) state trajectory 
 
 ( ) [ (0; ) , (1; ), ..., ( ; )}x x x x x x x N x= =x  (14) 
 
and the value function 
 
  ( ) ( , ( ))N NV x J x x= u  (15) 
 
The first control in the optimizing sequence ( )xu  is applied to the plant input at the time 
t, and the MBPC action results 
 
 ( ) (0; )Nc x u x=  (16) 
 
It is to be underlined that MBPC computes numerically online at the event (x, t) the 
optimal control action Eq. (16) rather than computing offline the optimal control law cN(·). 
It would be more convenient to explicitly compute offline, once for all, cN(·) via dynamic 
programming. As this is usually very hard of even impossible, MBPC computes at the 
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event (x, t) the optimal control action cN(x) rather than pre-computing the optimal control 
law cN(·). 
 
3. Zero Terminal-State MBPC 
 
This can be regarded as the earliest and, conceptually, the simplest form of MBPC, which 
guarantees stability to the controlled system, whenever feasibility is satisfied. Here, XN = 
{0X} and, hence, the terminal-state constraint is the equality constraint 
 
 ( ) 0Xx N =  (17) 
 
Given the plant state x, here UN(x), the set of feasible control sequences, is the set of 
sequences, which drive the plant initial state x to the zero-state in N steps with no 
constraint violation. Assume that UN(x) is non-empty, and satisfaction of all other 
conditions for the existence of the optimizing control sequence ( )xu  in Eq.(13).  
 
Then, asymptotic stability of the plant fed by the MBPC action can be easily proved by 
the following direct argument. Let ( )xu  be the control sequence obtained from ( )xu  by 
deleting its first control and inserting the zero-control 0U in its final position 
 
 ( ) : { (1; ), (2; ), ..., ( 1; ), 0 }Ux u x u x u N x= −u  (18) 
 
This is a control sequence again of length N which is feasible for (1; ) ( , (0; ))x x x u xϕ= . 
In fact, (1; )x x is driven by ( )xu to 0X in N − 1 steps, and held at 0X at the N-th step 
because 
 
 (0 , 0 ) 0X U Xϕ =  (19) 
 
Specifically, the state trajectory over N steps resulting from the initial state x°(1; x) and 
the control sequence ( )xu is 
 
 ( ) : { (1; ), ..., ( 1; ), 0 , 0 }X Xx x x x N x= −x  (20) 
 
Moreover,  
 

 2 2

( (1; ), ( )) ( , ( )) ( , (0; ))

( ) || (0) || || (0) ||
y x

N N

N

J x x x J x x l x u x

V x y uψ ψ

= −

= − −

u u
 (21) 

 
where y(0) = η (x) is the initial plant output and u(0) = cN(x) = (0; )u x is the effective 
input supplied at time 0 by MBPC to the plant. Then, if x(1) = ϕ (x, u(0)) denotes the 
effective plant state at time 1 in the MBPC-controlled system, according to Eq. (11) and 
Eq. (21) we get 
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2 2( (1)) ( (0)) || (0) || || (0) ||
y uN NV x V x y uψ ψ≤ − −   

 
Going to the generic time k, k = 0, 1, …, for the closed-loop system we have 
 2 2( ( )) ( ( 1)) || ( ) || || ( ) ||

y uN NV x k V x k y k u kψ ψ− + ≥ +  (22) 
 
where u(k), x(k) and y(k) denote, respectively, the effective plant input, state and output at 
time k in the MBPC-controlled system. Eq. (22) shows that 0{ ( ( ))}N kV x k ∞

=  is a 
monotonically non-increasing sequence. Hence, being VN(x(k)) nonnegative, as k → ∞ it 
converges to VN(x(∞)), 0 ≤ VN(x(∞)) ≤ VN(x(0)). Consequently, summing both sides of Eq. 
(22) from k = 0 to k = ∞, we get 
 

 2 2

0
( (0)) ( ( )) || ( ) || || ( ) ||

y u
k

V x V x y k u kψ ψ

∞

=

⎡ ⎤∞ > − ∞ ≥ +⎣ ⎦∑  (23) 

 
This, in turn, implies as ψ y > 0 and ψ u > 0 
 
 lim ( ) 0 and lim ( ) 0Y Uk k

y k u k
→∞ →∞

= =  (24) 

 
Then, under a detectability condition on Eq. (1) and Eq. (2), for ∀x ∈ UN(x) ≠ 0/  one can 
conclude asymptotic stability of the closed-loop system: stability that can be seen to be of 
exponential type if the plant is linear, viz. 
 

 
( 1) ( ) ( )

( ) ( )
x k x k Gu k

y k Hx k
+ = Φ + ⎫

⎬= ⎭
 (25) 

 
The foregoing stability proof hinges upon the following two crucial points: 
 
 ( ) 0NU x ≠ /  (26) 
 
 ( ) ( ) ( ) ( (1; ))N Nx U x x U x x∈ ⇒ ∈u u  (27) 
 
Now, feasibility condition Eq. (26) can be lost in zero terminal-state MBPC, because of 
the need of driving the plant state to 0X in a finite time. If the initial state is far from 0X, 
this brings about the use of large plants’ inputs which can violate possible input saturation 
constraints. Various approaches can be adopted so as to enlarge the set of admissible 
states (states such that Eq. (26) is fulfilled). E.g., given a plant state x ≠ 0X and an integer 
N1 such that 

1
( ) 0NU x = / , one can always find, if the plant is controllable and only input 

saturation constraints are present, a possibly large but finite integer N2, N2 > N1, so as to 
make 

2
( )NU x non-empty. The disadvantage with this approach is that N2 can be too large, 

and, hence, the associated COLOC problem 
2
( )NP x  too complex for an online solution 

for the available computing power and sampling time.  
 
Hereafter, forms of MBPC will be presented which are particularly tailored for both 
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solving the feasibility problem and yielding a highly performing closed-loop system. In 
so doing, for the sake of simplicity, we shall address linear plants of the form Eq. (23) in 
the presence of only input-saturation constraints. The reason for the latter choice is that, 
while hard bounds on the manipulated variables are typically dictated by physical 
constraints (e.g., limited power of actuators): state-related constraints are frequently of 
the “soft-type” and, hence, can be properly addressed by penalizing additional 
state-related variables in the cost. The reason for concentrating hereafter on linear plants 
is to simplify the exposition and call the reader’s attention more directly on features, e.g. 
set-membership terminal constraints, which are also equally important in MBPC of 
nonlinear systems. 
 
- 
- 
- 
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