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Summary 
 

A modern view of minimum variance control is presented by generalizing the notion of 
prediction and considering both discrete-time and continuous-time formulations. 
The relation to other control design methods is also presented. 
 
1. Introduction 
 
If it were possible to predict the future, it would be possible to plan ahead and adjust 
current actions to give desired future affects. Of course, unforeseen circumstances 
preclude exact prediction; but  an approximate prediction allows better planning than no 
prediction at all. This is the basic idea of minimum variance control: predict future 
system outputs and adjust the current control signal to give the future system output a 
desired value. 
 
Minimum variance control was developed as an approach to the control of systems with 
time delay with particular application to the paper-making industry. It was developed in 
a discrete-time stochastic setting, but was extended over a number of years to include 
both deterministic and continuous-time formulations. Although initially orientated 
towards system with time delay by using the idea of prediction, it was seen to be a 
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special case of a wider class of methods: Generalized minimum variance control. This 
generalized viewpoint is used here. 
 
An important application of these methods is as a basis for Self-tuning Control (see  
Self-tuning Control). 
 
Both, minimum-variance control, and its extension to generalized minimum variance 
control, are based on predicting a single time instant into the future. To some extent, this 
approach has been overtaken by Model-based Predictive Controllers (see Model-based 
Predictive Controllers for Linear Systems), which predict over a span of time into the 
future. However, they have the advantage of being simpler and, in some cases, they are 
as effective. 
 
2. Prediction 
 
Minimum-variance control and its extensions are based on the notion of predicting the 
future output of a dynamic system based on: 
 
• a model of the dynamic system  
• a model of the disturbances affecting the system  
• current and past measurements of the system input and output. 
 
There are two dichotomies in the form of the model (see General Models of Dynamic 
Systems): 
 
1. continuous-time or discrete-time 
2. transfer-function or state-space 
 
and all combinations have been used in the literature. This article focuses on the 
transfer-function approach and gives both discrete-time and continuous-time versions. 
 
2.1. Discrete-Time Model 
 

Consider the discrete-time system (see Discrete-Time, Sampled-Data, Digital Control 
Systems, Quantisation Effects). 
 
 ( ) ( ) ( )i i iA z y B z u C z ζ= +  (1) 
 
where yi, ui, and ζi are the system output, input and disturbance process at the discrete-
time i. A(z), B(z) and C(z) are polynomials in the forward shift operator z. Despite the 
fact that C(z) appears in the system equation, it will be treated as a design parameter: 
this can clearly be done by redefining ζi appropriately. In particular C(z) is chosen such 
that nC = nA − 1. The choice of C(z) is closely related to the choice of an observer 
polynomial  
 
The relative degree ρ of the transfer function 1

1
( )
( )

B z
A z

−

−  is equivalent to the system discrete 
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time-delay  
 
k = ρ. This can most readily be seen by rewriting the system as: 
 
 1 1 1( ) ( ) ( )d

i i iA z y q B z u C z ζ− − − −= +  (2) 
 
where: 
 
 1 1

0 1( ) An
nA z a a z a z−− −= + + +  (3) 

 1 1
0 1( ) Bn

nB z b b z b z−− −= + + +  (4) 
 
 1 1

0 1( ) Cn
nC z c c z c z−− −= + + +  (5) 

 
For the purpose of prediction, it is convenient to rewrite Eq. (2) as: 
 

 
1 1

1 1

( ) ( )
( ) ( )i d i i d

B z C zy u
A z A z

ζ
− −

+ +− −= +  (6) 

 
In this form, the future system output (that is the output d sample intervals into the 
future and assuming that i denotes the present time) is the sum of two terms: 
 
1. 

1

1

( )

( )

B z
iA z

u
−

−  representing the effect of the current (ui) and past (uj; j < i) input signals 

and 
2. 

1

1

( )

( )

C z
i dA z

ζ
−

− + representing future (ζj; j > i), current (ζi) and past (ζj; j < i) 

disturbances. 
 
This decomposition of the disturbance can be made explicit by writing 

1

1
( )
( )

C z
A z

−

−  as: 

 

 
1 1

1
1 1

( ) ( )( )
( ) ( )

dC z F zE z q
A z A z

− −
− −

− −= +  (7) 

 
where the degree of 1( )F z−  is less than that of 1( )A z− . Algebraically this is polynomial 
long division; physically, 1( )d

iq E z ζ− −  represents the k future values of ζi and 
1

1

( )

( )

F z
iA z

ζ
−

− the current and past values. 

 
Assuming that future values of ζi are unknown, but the best guess for them is zero, a 
prediction ˆi dy +  for yi+d at time i is obtained by deleting the first term of Eq. (7) and 
substituting into Eq. (6) to give: 
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1 1

1 1

( ) ( )ˆ
( ) ( )i d i i

B z F zy u
A z A z

ζ
− −

+ − −= +  (8) 

 
Rearranging Eq. (2) to give an expression for ζi and substituting into Eq. (8) gives the 
predictor equation: 
 

 
1 1

1 1

( ) ( )ˆ
( ) ( )i d i i

G z F zy u y
A z C z

− −

+ − −= +  (9) 

 
where 
 
 1 1 1( ) ( ) ( )G z E z B z− − −=  (10) 
 
2.1.1. Initial conditions 
 

Eq. (2) implicitly assumes that the system initial conditions are zero. If they are not, a 
term 

1

1

( )

( )

D z

A z

−

−  must be added to the right-hand side of Eq. (2) and 
1 1

1

( ) ( )

( )

E z D z

C z

− −

−
 to the right-

hand side of Eq. (9). 
 
However, if 1( )C z−  has stable roots, then the predictor is stable and the effect of initial 
conditions has no long-term effect. 
 
2.1.2. Stochastic Interpretation 
 

If the disturbance signal ζi is (discrete-time) white noise (see Models of Stochastic 
Systems), then Eq. (9) gives the best predictor in the sense that it gives the least possible 
mean-square error. In essence, this is because the error 
 
 1ˆ ( )k

i i iy y z E z ζ−− =  (11) 
 
represents the weighted sum of future values of white noise and is therefore 
uncorrelated (in the stochastic sense) with current and past measurements. 
 
In this case, 1( )C z− is no longer a design parameter, but rather chosen based on noise 
model. 
 
2.1.3. Generalized prediction 
 

Two generalizations of the predictor of Section 2.1 are useful for control purposes (see 
Section Error! Reference source not found.). 
 
Defining the auxiliary output 
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 1( )i iP z yφ −=  (12) 
 
a predictor îφ

 for φi is: 
 

 
1 1

1 1

( ) ( )ˆ
( ) ( )i d i i

G z F zu y
C z C z

φ
− −

+ − −= +  (13) 

 
where 
 
 1 1 1( ) ( ) ( )G z E z B z− − −=  (14) 
 
and 
 

 
1 1 1

1
1 1

( ) ( ) ( )( )
( ) ( )

dP z C z F zE z q
A z A z

− − −
− −

− −= +  (15) 

 
Notice that the generalized predictor of Eq. (13) reduces to the predictor of Eq. (9) when 

1( )P z− =1. 
 
The interpretation of 1( )P z−  is given in Section 3. 
 
Using polynomials in the backward shift operator z−1 is useful in the preceding 
derivations as it has a clear physical interpretation. However, to link with the 
continuous-time approach it is useful to re-express Eqs. (13)-(15) in terms of z. Using 
Eqs. (3)-(5) and equivalent expressions for the other polynomials the predictor 
equations can be re-expressed as: 
 

 ( ) ( )ˆ
( ) ( )i d i i

G z F zu y
C z C z

φ + = +  (16) 

 
 ( ) ( ) ( )G z E z B z=  (17) 
 

 ( 1) ( ) ( ) ( )( )
( ) ( )

k P z C z F zz E z
A z A z

− = +  (18) 

 
2.2. Continuous-time model 
 

Consider the continuous-time system (see General Models of Dynamic Systems) in 
transfer function form 
 
 ( ) ( ) ( ) ( ) ( ) ( )sTA s y t e B s u t C s tζ−= +  (19) 
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where y(t), u(t), and ζ(t) are the system output, input and disturbance process at the 
continuous-time t. A(s), B(s) and C(s) are polynomials in the Laplace operator s. The 
factor e−sT represents a system time-delay of T units. 
 
In a similar fashion to Eq. (12) define the auxiliary output 
 
 ( ) ( ) ( )sTt e P s y tφ =  (20) 
 
Combining Eqs. (19) and (20): 
 

 ( ) ( ) ( ) ( )( ) ( ) ( )
( ) ( )

sTP s B s P s C st u t e t
A s A s

φ ζ+  (21) 

 
In a similar manner to the discrete-time case, the transfer function multiplying ζ(t) has 
to be decomposed into realizable and unrealizable parts. This is considered in two 
stages: 
 
1. unrealizable terms due to impulses 
2. unrealizable terms due to non-causal terms 
 
Considering first, the case where the delay T = 0 the relevant transfer function is 
decomposed as: 
 

 1
1

( )( ) ( ) ( )
( ) ( )

F sP s C s E s
A s A s

=  (22) 

 
where the degrees of the polynomial are related by: 
 
 1F An n= −  (23) 
 
 E P C An n n n= + −  (24) 
 
This is simply polynomial long division. 
 
Secondly,  consider the general case where the delay T ≥ 0. Performing the 
decomposition of Eq. (22), the transfer function multiplying ζ(t) in Eq. (21) can be 
written as: 
 

 1
1

( )( ) ( ) ( )
( ) ( )

sT sT sT F sP s C se e E s e
A s A s

= +  (25) 

 
The second term is no longer causal due to the factor esT . A further decomposition is 
then made: 
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 1 2
2

( ) ( )( )
( ) ( )

sT sTF s F se e E s
A s A s

= +  (26) 

 
where the Finite-impulse response transfer function E2(s) is anti-causal but 2 ( )

( )
F s
A s

 is 

causal. 
 
Combining the decompositions of Eqs. (22)-(26): 
 

 ( ) ( ) ( )( )
( ) ( )

sT sTP s C s F se e E s
A s A s

= +  (27) 

 
where 
 
 1 2( ) ( ) ( )sTE s e E s E s= +  (28) 
 2( ) ( )F s F s=  (29) 
 
The “prediction” of φ(t) is then given as the realizable part of φ(t) 
 

 ( ) ( ) ( )ˆ( ) ( ) ( )
( ) ( )

P s B s F st u t t
A s A s

φ ζ= +   (30) 

 
Eliminating ζ(t) using Eq. (21) and rearranging finally gives: 
 

 ( ) ( ) ( )ˆ( ) ( ) ( )
( ) ( )

E s B s F st u t y t
C s C s

φ = +  (31) 

 
Example 1: Predictor 
 

Consider the following first-order system: 
 ( )A s s=  (32) 
 
 ( )B s b=  (33) 
 
The design polynomials are 
 
 ( ) 1P s ps= +  (34) 
 
 ( ) 1C s =  (35) 
 
The decomposition of Eq. (22) becomes 
 

 1 1ps p
s s
+

= +  (36) 
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Thus E1(s) = p and F1(s) = 1. 
 
Assuming a unit time delay, the decomposition of Eq. (26)gives 
 
 2 ( ) 1F s =  (37) 
 

 2
1( )

seE s
s

−−
=  (38) 

 
E2(s) of Eq. (38) is a FIR transfer function; the pole at s = 0 has zero residue. It can be 
implemented as written, but this leaves a canceling pole and zero at s = 0, it is better to 
approximate e–s by, for example a Padé approximation and explicitly cancel. 
 
Hence 
 

 1ˆ( ) ( ) ( )
sep bu t y t

s
φ

−⎡ ⎤−
= + +⎢ ⎥
⎣ ⎦

 (39) 

 
2.3. Long-Range Prediction 
 

The predictors defined in the preceding sections do not predict beyond a time 
corresponding to the system time-delay. It is, in fact, possible to predict further into the 
future if some assumption is made about the future control signal. Assuming that there 
is going to be no feedback in the future, (open-loop control) implies a deterministic 
control signal, which then allows such long-range prediction. This idea is used by 
Model-based Predictive Controllers (see  Model-based Predictive Controllers for Linear 
Systems). 
 
- 
- 
- 
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