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Summary 
 
This chapter addresses the problem in which a linear plant affected by stochastic 
disturbances and noise is to be controlled so as to minimize a quadratic cost. This is the 
subject of LQ stochastic control. The class of problems considered comprises different 
subclasses according to the type of plant used (state–space, input–output), the 
information available to the controller (direct measure of the plant state, available or 
not), control objectives (regulation, servo), or time domain (discrete, continuous). The 
LQG problem and the separation principle are presented. The chapter also considers the 
relationship of LQ stochastic control and H∞  mixed sensitivity compensation, 
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LQG/LTR, and the maximum entropy formulation of optimal stochastic control, which 
provides an interpretation of the separation principle. 
 
1. Introduction 
 
LQ-stochastic control refers to a problem in which a linear plant affected by stochastic 
disturbances and noise is to be controlled so as to minimize a quadratic cost. 
 
Example 1.1 
 
As an engineering example, consider the problem of regulating the superheated steam 
temperature in a thermoelectric power plant. Among other factors, plant economic 
performance is directly proportional to the average superheated steam temperature. 
However, due to safety and life extending considerations, there is a maximum bound, 

maxT , which cannot be exceeded “too often.” In a probabilistic framework, this means 
that the risk, measured by the area under the probability density function (pdf) of the 
steam temperature T  to the right of maxT , must be below a prescribed value maxR . 
 

 
 

Figure 1. Motivating example to LQ-stochastic control 
 
Figure 1 shows, for motivating purposes, two situations labeled A and B, corresponding 
to two different controllers operating in stationary situations. Steam temperature pdfs 
are shown in both cases. In situation A, the set-point *

AT  is adjusted to a value low 
enough to meet the risk specification, while yielding the highest possible economic 
performance. In situation B, the controller is tuned so as to reduce steam temperature 
fluctuations around the set-point.  
 
The variance of these fluctuations is therefore smaller, and the set-point *

BT  may 
consequently be made higher while still meeting the risk specification. This results in an 
increase in plant economic performance proportional to * *

B AT T− . 
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The above considerations suggest that the controller should be designed such as to 
minimize the steady-state value of the power of the fluctuations around the set-point, i. e. 

( )2*E T(t) T
⎡ ⎤

−⎢ ⎥
⎣ ⎦

 where [ ]E ⋅  denotes the statistical average, *T  is the desired 

temperature set-point and t  stands for time. However, since this may require an 
excessive actuator action (in this case valve movement), a penalty on the control signal 
u(t)  is to be imposed. This results in the controller being designed to minimize the 

steady-state value of a cost functional given by ( ) ( )2 2* *J E T(t) T u(t) u
⎡ ⎤

= − +ρ −⎢ ⎥
⎣ ⎦

, 

where *u  and ρ  are constants. The parameter ρ  establishes a penalty on the control 
action, being used as a “design knob” for which an appropriate trade-off should be 
found: when ρ  is small, more importance is given to reducing temperature fluctuations; 

when ρ  increases, the power of control fluctuations around *u  decreases while 
temperature regulation degrades. 
 
LQ-stochastic (LQS) control extends the above example by considering cost functions 
which involve the plant state and non-stationary situations as well as the tracking of 
time-varying references. 
 
The origin of the LQS control problem and the methods associated with its solution can 
be traced back to the decade of 1950, in relation to economic problems. Major impetus 
came however from aerospace problems in the following decade, together with the 
associated development of state–space theory.  
 
Shortly afterwards, mainly process industry problems propelled an approach relying on 
plant input–output models and polynomial (or polynomial matrix) techniques. Today, a 
fairly complete overall theory of LQS control is available, including the relation among 
the various approaches, as well as with other control theories, such as H∞  mixed 
sensitivity compensation or the entropy based formulation. 
 
As can be anticipated, LQS control has a close relation with optimal linear quadratic 
control and the Kalman–Bucy filter, when formulated in a state–space setting, and with 
controller design using polynomial matrix descriptions when using input–output models. 
Actually, a remarkable fact holds for LQS control, viz. that the optimal controller is 
designed using a separation principle. According to this principle, the problem is split in 
the separate design of an LQ controller and a Kalman–Bucy filter yielding a plant state 
estimate, one not affecting the other. 
 
In continuous time, understanding the design of LQ-stochastic controllers requires the 
machinery of stochastic differential equations, and is thus mathematically more 
involved then if a discrete time setting is assumed. Therefore, for the sake of 
understanding by the non-specialist, this article starts by considering the problems in 
discrete time, only later presenting their counterpart results in continuous time. 
Furthermore, in the same vein, basic regulation problems are first considered before 
their extension to the stochastic servo problem. 
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2. LQ Regulation for Discrete Time Plants 
 
This section considers the basic theory of the LQ regulation problem for stochastic 
linear dynamics in discrete time. The plant is initially modeled by a state–space model. 
Another class of models will later be considered. The solution is first provided for the 
case in which a perfect state measurement (i.e. yielding a measure of all state 
components unaffected by noise, a situation referred in the literature as complete state 
information or complete state observations) is available. This is then extended to the 
situation, often found in applications, in which the state is not directly available for 
measurement but has to be estimated from input–output observations. 
 
2.1. Complete State Information 
 
Let the plant to be regulated be modeled by the state representation 
 
x(k 1) (k)x(k) (k)u(k) v(k)+ = Φ +Γ +  (1) 
 
in which k  is an integer index denoting discrete time, nx(k)∈ℜ  is the plant state, 

mu(k)∈ℜ  is the manipulated variable and nv(k)∈ℜ  is a stochastic disturbance, 
inaccessible for direct measurement. For each k , (k)Φ  and (k)Γ  are n n×  and n m×  
real matrices. 
 
The sequence { }v  is assumed to be a white, zero mean sequence, verifying 
 
[ ]
[ ]

n n

v

E v(k)'v(k i) 0 i 0
E v(k)v '(k) P (k)

× ⎫− = ≠ ⎪
⎬= < ∞ ⎪⎭

 (2) 

 
and 
 
[ ]0 0 n nE v(k )x '(k ) 0 ×=  (3) 

 
where prime denotes transpose and n0  and n n0 ×  are matrices of zero entries with the 
indicated dimensions. Although no assumption is made on the Gaussianity of { }v , this 
case is not ruled out. 
 
For formulating a regulation problem in relation to plant (1), the following quadratic 
performance index is considered: 
 

( )
0

T 1
2

dr d Q(T)
k k

J E L k, x(k), u(k) x(T)
−

=

⎡ ⎤
⎢ ⎥= +
⎢ ⎥⎣ ⎦
∑  (4) 

 
in which: 
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( ) 2 2
d Q(k) R(k)L k, x(k), u(k) : x(k) u(k)= +  (5) 

 
for k T< , 0T k>  being the terminal time. Hereafter 2

Mz  is defined for a vector z  and 
a matrix M  as: 
 

2
Mz : z 'Mz=  (6) 

 
For all { }0k k , , T∈ …  the weight matrices Q(k), R(k)  are assumed to satisfy: 
 
Q(k) Q '(k) 0= ≥  (7) 
 
R(k) R '(k) 0= >  (8) 
 
The scalar quantity dL (k, x(k), u(k))  is referred to as the instantaneous loss at time k . 
With the assumptions (7, 8) it is non-negative. There is no loss of generality in 
assuming the weights Q(k)  and R(k)  symmetric and no cross-product terms between 
x(k)  and u(k)  in the loss. 
 
The admissible regulation strategies are defined by: 
 

ku(k) I∈  (9) 
 
meaning that u(k)  can be computed as a function of kI , the information available at 
time t , which consists of the past realizations of u  and present and past realizations of 
x  (assumed available for direct observation). Therefore, admissible regulation 
strategies as defined by (9) are non-anticipative or causal, since the control decision to 
be taken at a generic time k  depends only on the variable samples available. 
 
In relation to this plant, performance index, and admissible regulation strategies, the 
following problem is considered: 
 
LQ-stochastic (LQS) regulation problem with complete state information (discrete 
time) 
 
Consider the plant described by the stochastic linear model (1) and the quadratic 
performance index drJ  given by (4). Assuming complete state information available, 
find, among all the admissible regulation strategies defined by (9), an input sequence to 
the plant, { }0u(k), k k T≤ < , minimizing drJ . 
 
The solution to this problem is given by the following theorem 
 
Theorem 1.1: LQS regulator with complete state information (discrete time) 
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The solution to the LQS regulation problem with perfect state observations is given by 
the linear state feedback law: 
 

d 0u(k) F (k)x(k) k k T= ≤ <  (10) 
 
where the feedback gain matrix dF (k)  is computed by: 
 

[ ] 1
dF (k) R(k) '(k)P(k 1) (k) '(k)P(k 1) (k)−= − + Γ + Γ ⋅Γ + Φ  (11) 

 
and the matrix P(k) is the symmetric nonnegative definite matrix resulting from the 
solution of the following backward Riccati difference equation (RDDE): 
 
P(k) '(k)P(k 1) (k)= Φ + Φ −  
 

[ ] 1'(k)P(k 1) (k) R(k) '(k)P(k 1) (k) '(k)P(k 1) (k) Q(k)−−Φ + Γ +Γ + Γ Γ + Φ +  (12) 
 
Furthermore, the minimum cost achievable in { }k, , T 1−…  is given by: 
 

[ ] ( ) [ ]
T 12

vP(k)
i k

E x(k) tr P(k)cov(x(k) tr P(i 1)P (i)
−

=
+ + +∑  (13) 

 
This result is obtained by a stochastic version of dynamic programming. For 

{ }0k k , , T 1∈ −…  consider the Bellman function: 
 

( ) ( )
T

dT 1
i kk

min
V k, x(k) : E L i, x(i), u(i) | x(k)

u −
=

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭
∑  (14) 

 
This function satisfies the stochastic Bellman equation: 
 
( ) ( ) [ ]{ }dV k, x(k) min L k, x(k), u(k) E V(k 1, x(k 1)) | x(k)= + + +  (15) 

 
with terminal condition: 
 
( ) 2

Q(T)V T, x(T) x(T)=  (16) 

 
Using an induction argument, the solution of the above equation is shown to be: 
 

[ ]
T 1

v
i k

V(k, x) x 'P(k)x tr P(i 1)P (i)
−

=
= + +∑  (17) 

 
with P(k)  satisfying the RDDE (12). 
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The solution of the LQS regulation problem with perfect state observations is the same 
as for the LQ control regulation problem obtained by letting nv(k) 0= . As expected, the 
minimum achieved cost achievable in the LQS problem is increased with respect to the 
one of the corresponding LQ problems by the stochastic disturbance v . 
 
2.2. Partial State Information: The LQG Regulator in Discrete Time 
 
In many practical cases the full plant state is not available for measurement and, 
furthermore, the measures made are corrupted by noise. Therefore, the plant model (1) 
has to be complemented with the sensor model, resulting in: 
 
x(k 1) (k)x(k) (k)u(k) v(k)

y(k) H(k)x(k) w(k)
+ = Φ +Γ + ⎫

⎬= + ⎭
 (18) 

 
Here, py R∈  is the vector of observations and pw R∈  models observation noise. The 

real matrix H(k)  has dimension p n× . Let [ ](k) : v '(k) w '(k) 'ξ = and now k
dΣ  be the σ- 

field generated by { }0 0x(k ), (k ), , (k)ξ ξ…  and assume that the joint process { }ξ  
verifies 
 

[ ]

[ ]

n p n p

v n p

p n w

E (k) (k i) ' 0 i 0

P (k) 0
E (k) '(k) P (k)

0 P (k)

+ × +

×
ξ

×

⎫ξ ξ − = ≠
⎪⎪

⎡ ⎤⎬
ξ ξ = = ⎢ ⎥⎪

⎢ ⎥⎪⎣ ⎦⎭

 (19) 

 
Furthermore, assume that 
 

0x(k )  and { }0(k), k k Tξ ≤ <  are jointly Gaussian distributed (20) 
 
This hypothesis is necessary because the state is to be estimated from observations 
using a Kalman–Bucy filter. 
 
The admissible regulation strategies are in this case defined by: 
 

{ }ku(k) y∈σ  (21) 

 
where u(k)  is a function of plant observations y  up to time k . With these elements, the 
following version of the LQS regulation problem is now defined: 
 
LQ Gaussian (LQG) regulation problem (discrete time) 
 
Consider the linear stochastic plant (18), where observation noise and disturbances have 
a Gaussian distribution, and the quadratic performance index drJ  defined by (4). Find 
an input sequence to the plant, { }0u(k), k k T≤ < , minimizing drJ  among all the 
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admissible regulation strategies defined by (21). 
 
The solution to this problem is given by the following theorem: 
 
Theorem 1.2: LQG regulator (discrete time) 
 
The solution of the LQG regulation problem is given by the feedback law of the filtered 
state estimate 
 

d 0ˆu(k) F (k)x(k | k) k k T= ≤ <  (22) 
 
where dF (k)  is the optimal feedback gain matrix, which is the same as the one given in 
theorem 1.1, computed by (11, 12). The filtered state estimate is given by the discrete 
Kalman–Bucy filter, defined by the difference equations: 
 

dˆ ˆx(k | k) x(k | k 1) K (k)e(k)= − + �  (23) 
 
ˆ ˆx(k 1| k) (k)x(k | k) (k)u(k)+ = Φ +Γ  (24) 

 
with: 
 

ˆe(k) y(k) H(k)x(k | k 1)= − −  (25) 
 

[ ] 1
d wK (k) (k)H '(k) H(k) (k)H '(k) P (k) −= Π Π +�  (26) 

 
and (k)Π , the sate prediction error covariance, given by the forward Riccati difference 
equation: 
 

(k 1) (k) (k) '(k)Π + = Φ Π Φ −  
 

[ ] 1
w v(k) (k)H '(k) H(k) (k)H '(k) P (k) H(k) (k) '(k) P (k)−−Φ Π Π + Π Φ +  (27) 

 
initialized by 0(k )Π , the corresponding a priori value. Furthermore, the minimum cost 
yielded by the optimal control sequence starting at time k , { }u(i), k i T≤ <  is given by: 
 

[ ] ( ) [ ] [ ]
T 1 T2

vP(k)
i k k 1

E x(k) tr P(k) (k | k tr P(i 1)P (i) tr Q(k) (i | i)
−

= =
+ Π + + + Π∑ ∑  (28) 

 
with ( )k(k | k) : cov x(k) | yΠ =  satisfying: 

 

[ ] 1
w(k | k) (k) (k)H '(k) H(k) (k)H '(k) P (k) H(k) (k)−Π = Π −Π Π + Π  (29) 
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The LQG regulator consists (Figure 2) of a Kalman–Bucy filter together with a LQS 
regulator acting on its output: that is, with the state replaced by its filter estimate. 
 
The main fact about theorem 1.2 is that the LQG regulator is designed according to a 
separation principle. This principle states that the regulator and the filter (state 
estimator) are designed independently of each other and then fitted together.  
 
Furthermore, the feedback is computed from the state estimate as if this is the actual 
state, a fact referred to as the certainty equivalence principle.  
 
This is an important result which does not extend to nonlinear systems. Indeed, in 
general the control variable affects both the plant output and the posterior pdf of the 
state given observations, something called “the dual effect.” 
 
 In LQG the control is such that there is no dual effect and the certainty equivalence 
principle holds. 
 

 
 

Figure 2. Structure of the LQG regulator 
 
As a final point, compare the minimum value of the cost for the LQS regulator with 
perfect state observations (given by (13)) and the one yielded by the LQG regulator 
(given by Eq. (28)).  
 
The latter is increased with respect to the former by the last term of (28), which depends 
on the posterior covariance matrices ( )k(k | k) cov x(k) | yΠ =  and reflects the fact that 

in LQG a perfect state measurement is not being used. 
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