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Summary 
 
We present an account of several topics, modeling, control, estimation, stability, 
identification and adaptive control, which arise in the study of the control of stochastic 
systems. 

1. Introduction 

A holistic treatment of the problem of control of stochastic systems encompasses the 
following topics: 

(i) Models of stochastic systems 

(ii) Optimal stochastic control 
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(iii) Stability of stochastic systems 

(iv) Estimation of stochastic systems 

(v) Identification of stochastic systems 

(vi) Control of partially observed systems 

(vii) Adaptive control 
 
We present an outline of each of these topics which will enable the reader to obtain an 
integrated perspective of the field. 

2. Models of Stochastic Systems 

A discrete-time stochastic process 0{ ( )}tt +
=
∞x is a Markov chain if 

( ( 1) (0) , , ( )) ( ( 1) ( )).p t t p t t+ = +…x x x x x  That is, the conditional distribution of the 
future state ( 1)t +x  depends on the past ( (0), , ( ))t…x x  only through the present state 

( )tx .  
 
Indeed this justifies the use of the name “state”. The Markov chain can then be 
described by its transition probabilities ( ( 1) ( )).p t t+x x  
 
Extending this notion, one can describe a controlled Markov chain by its controlled 
transition probabilities ( )p ′x x, u  which describe the conditional probability of the next 
state ( 1)t +x  being ′x ,  when the current state ( )t =x x,  and an input ( )t =u u  is applied. 
 
If the state ( )tx  is not observed, then it is common to model the observations ( )ty  by 
the conditional probability distribution ( )p y x  which describes the probability 
distribution of the observation ( )ty  when the state ( )t =x x.   
 
The system is then called a partially observed controlled Markov chain. 
 
If the transition probabilities depend on the time t , then one can describe the time-
varying system by the pair of transition probabilities ( )p ′x x, u, t  and ( ).p y x,t  
 
A common deterministic noise-free state space model of a systems in discrete-time is  
 

( 1) ( ( ), ( ), )
( ) ( ( ), ),
t t t t
t t t
+ =

=
x f x u
y g x

 

 
where ( )tx  is the state of the system at time t , ( )tu  is the input applied at time t , and 

( )ty  is the output at time t . 
 
The corresponding stochastic analog of the state space model is 
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( 1) ( ( ), ( ), ( ), )
( ) ( ( ), ( ) ),
t t t t t
t t t t
+ =

=
x f x u w
y g x v

 

 

where ( )tw  is the noise entering the state equation, and ( )tv  is the noise entering the 
observation equation. These noises are modeled as stochastic processes (see Models of 
Stochastic Systems).  

If { (0), (1), (2), }…w w w  are mutually independent, then ( )tx  is indeed the state of a 
controlled Markov chain. If further { (0), (1), (2), }…v v v  are also mutually independent, 
and w, v  are independent of each other, then one has a partially observed controlled 
Markov chain written in the form of state and observation equations. 
 
If { (0), (1), (2), }…w w w  are not mutually independent, then one often models them as the 
output of a system driven by independent random variables 
{ (0), (1), , (0), (1), }m m… …n n  
 

( 1) ( ( ), ( ))
( ) ( ( ), ( )).
t t t
t t m t
+ =

=
z h z n
w k z

 

 
In such situations, one can adjoin z  to x  and let ( )x,z  serve as the state. 
 
A special and important case of such a state space model is a linear stochastic system: 
 

( 1) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ),
t A t t B t t G t t
t C t t H t t
+ = + +

= +
x x u w
y x v

 

 
where ( ), ( ), ( ), ( )A t B t C t G t  and ( )H t  are time-varying matrices of appropriate 
dimensions. A model that particularly lends itself to analysis is when the noise 
processes ( )tw  and ( )tv  are jointly Gaussian stochastic processes (see Models of 
Stochastic Systems). Then it is called a Linear-Gaussian model. 
 
Instead of dealing with the state ( )tx , one can directly model how the input influences 
the output, i.e., by an input-output model. The most common model is a Control 
Autoregressive Moving Average Model (CARMA) or Autoregressive Moving Average 
Model with Exogenous Inputs (ARMAX) model: 
 

1 0 1

1

( ) ( 1) ( ) ( ) ( 1)
( ) ( ) ( 1) ( ).

t a t a t b t b t
b u t t c t c t

+ − + + − = + − +
+ − + + − + + −

n

n n

y y y n u u
n w w w n

 

 
One can also consider the continuous time counterpart of the state-space model: 

( ) ( ( ), ( ), ) ( ( )) ( )
( ) ( ( )) ( ).

d t t t t dt t d t
d t t dt d t

σ= +
= +

x f x u x w
y g x v
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Here ( )tw  and ( )tv  are Brownian motion processes, and one has to interpret the above 
stochastic differential equations in the appropriate mathematical way. This requires a 
knowledge of Ito stochastic integrals and stochastic calculus. 

3. Optimal Stochastic Control 

Consider the case of a discrete-time stochastic system where the state ( )tx  is directly 
observed. How should one choose the control input { ( )}tu  to be applied to such a 
system? A common approach is to consider a cost function of the form 
 

0
( ( 1)) ( ( ), ( )) ,

T

t
E T c t t

=

⎡ ⎤
+ +⎢ ⎥

⎢ ⎥⎣ ⎦
∑h x x u  

 
and choose control inputs which minimize this expected cost. Above T  is a time 
horizon, ( ( 1))T +h x  is the terminal cost, and ( ( ), ( ))c t tx u  is the running cost. One 
minimizes this cost over the set of history dependent strategies where 

( ) ( (0), , ( ), )t t t= …u u x x  is allowed to depend on the entire past of the observations and 
the current time .t  It can be shown that within this class of history dependent strategies 
one can restrict attention to strategies of the form ( ) ( ( ), )t t t=u u x  where the input 
depends only on the current state and current time. Such a strategy can be termed as a 
state feedback policy or a Markov policy. 
 
If one defines the optimal remaining cost or optimal cost-to-go from a state x  at time t  
by  
 

( )( ) : Min ( ( 1)) ( ( ), ( )) ( ) ,
T

s t
V t E T c s s t⋅

=

⎡ ⎤
= + + =⎢ ⎥

⎢ ⎥⎣ ⎦
∑ux, h x x u x x  

 
then it can be shown that this function satisfies the following equation: 
 

( ) Min ( ) ( ) ( 1) ,V t c V t
′

⎧ ⎫⎪ ⎪′ ′= + +⎨ ⎬
⎪ ⎪⎩ ⎭

∑u
x

x, x,u p x x, u x ,  

 
with the terminal condition 
 

( 1) ( ).V + =x,T h x  
 
Essentially the above equation says that the optimal cost from a state x  at time t  is 
obtained by considering different choices of an input u  to apply at time t . For each 
such potential input u , one determines the current cost ( )c x,u  as well as the expected 
cost from the state reached at the next time instant. Then, one simply chooses the best 
input to apply at the present time as the one which minimizes the sum of the expected 
current cost plus the expected remaining cost. This equation is called the dynamic 
programming equation, and the logic leading to it as the principle of optimality. It also 
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follows that if for ( )x,t  one chooses the minimizing u , calling it ( )u x,t , then ( )u x,t  is 
the optimal policy. Thus the optimal policy can be chosen as a Markov or a state 
feedback policy. 
 
The dynamic programming approach can be extended to other models and situations, as 
shown in Dynamic Programming. 
 
A particular special case of great interest in control is the so-called Linear-Quadratic-
Gaussian (LQG) problem. For a linear system with independent white Gaussian noises 
w  and v , 
 

( 1) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( ) ( ),
t A t t B t t G t t
t C t t H t t
+ = + +

= +
x x u w
y x v

 

 
one seeks to minimize a quadratic cost criterion: 
 

1
( 1) ( 1) ( ( ) ( ) ( ) ( ) ( ) ( )) ,

T

t
E T S T t Q t t t R t t

=

⎡ ⎤
+ + + +⎢ ⎥

⎢ ⎥⎣ ⎦
∑T T T Tx x x x u u  

 
where 0, ( ) 0S Q t≥ ≥  and ( )R t >0.  
 
The cost-to-go function turns out to be quadratic function of the state plus a 
deterministic term: 
 

( ) ( ) ( ).V t S t t= +Tx, x x γ  
 
By substituting this form in the dynamic programming equation, one can solve for ( )S t  
and ( )tγ  in terms of ( 1)S t +  and ( 1)t +γ  (remember that dynamic programming solves 
the problem backwards in time). With the boundary conditions ( 1)S T S+ =  and 

( 1) 0,T + =γ  one thus obtains recursions for ( )S t  and ( )tγ . From the minimizing 
argument in the dynamic programming equation one also determines that the optimal 
control law is of the form 
 

( ) ( ) ( ),t K t t=u x  
 
i.e., linear time varying feedback, with ( )K t  expressible in terms of ( )S t . The LQG 
problem thus admits a clean solution. The details of the solution are given in LQ-
stochastic Control. Given that the quadratic cost function is a reasonable criterion, and 
given the widespread usage of linear models, this solution has proved to be eminently 
useful in control system design. 
 
In many situations of interest, e.g., in adaptive control and self-tuning regulators, see 
Self-Tuning Control, one wishes to work with input-output models with quadratic costs. 
This is dealt with in Minimum Variance Control. 
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