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Summary      
 
Control design for distributed parameter systems is discussed. Instead of trying to give 
an overview, which would necessarily be incomplete, emphasis is put on so-called 
direct methods, which means design methods not based on finite dimensional 
approximations. Two direct design methods are presented, an internal model control 
approach and a flatness-based one.  
 
The first is illustrated by a heat exchange laboratory experiment and the second is 
explained on an example based on the linear heat equation. The underlying 
mathematical tools are state space and semigroup methods for the first and series 
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expansions for the second method. 
 
1. Introduction   
 
Control of distributed parameter systems (DPS) is a very wide field, which is of 
increasing importance in many engineering disciplines. For these (infinite dimensional) 
systems, which are described by partial differential equations, there is an even larger 
variety of problems and concepts than in finite dimension (based on ordinary 
differential equations), and the mathematics required in DPS control design is more 
involved. 
 
Of course, in view of the many different control problems in DPS control, even more 
design approaches exist. In the present chapter emphasis is put on two boundary control 
methods used to address tracking and motion planning problems. They are known as the 
internal model approach and the flatness-based approach. Each of them is illustrated by 
an example, a laboratory heat exchange process for the internal model control and a heat 
equation for the flatness-based control. 
 
The chapter is structured as follows. In order to provide an overview of the kind of 
problems encountered in DPS control, problems and methods are briefly discussed in 
the next section. Section three introduces a direct state space approach using semigroup 
theory, which is illustrated through a heat exchange process. Internal model control of 
the heat exchange process is then discussed in Section four. Finally, the flatness-based 
approach, a promising new method for motion planning and open loop control design is 
described in Section five. 
 
2. Control Problems and Control Design Methods     
 
Distributed parameter systems are described by partial differential equations, often in 
conjuction with ordinary differential equations and non-differential equations. These 
models may be very complex, involve multiple dependent variables and independent 
space coordinates in complex domains, sometimes with free boundaries, and they may 
be time dependent and non-linear. However, in many technological applications rather 
simple models that are precise enough for control design purposes can be used. Often 
one can restrict to a few variables with major variations in only one space dimension. 
Moreover, as in finite dimension, linearization about stationary regimes is reasonable in 
many situations. Therefore, variants of rather few typical equations cover a wide range 
of processes. Typically, one encounters parabolic equations like the “heat equation” or 
“diffusion equation” in heat transfer and chemical processes, hyperbolic equations 
describing transport and wave propagation phenomena and plate and beam equations in 
elasticity. 
 
Even in systems of distributed nature, control inputs (and measurements) are most often 
lumped quantities, i.e. they act at particular points, often on the boundary. Important 
control problems comprise motion planning, steering along trajectories and 
stabilization, for example. 
 
As for the design methods, two major classes can be distinguished, namely indirect and 
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direct methods. Indirect methods (also called early lumping methods) are based on 
approximations of either the equations or the solutions by finite dimensional systems. 
For instance, replacing spatial differential operators by finite difference schemes leads 
to a finite set of ordinary differential equations. On the other hand, classical methods of 
approximation of solutions are spectral (also called modal) methods, based on solution 
of eigenvalue problems and the method of weighted residuals. All these indirect 
methods are important for simulation purposes and can also be used in controller design, 
although the approximate models obtained that way are often of high dimension. On the 
other hand, direct methods (also called late lumping methods) use the partial differential 
equations for the control design. An approximation is done only for implementation 
purposes. Both, the internal model control and the flatness-based control considered 
here fall into this latter category. 
 
A rough classification of problems and methods may distinguish 
 
• different types of models: 
 
- Models describing the time evolution of a single or of multiple spatially dependent      
variables (scalar fields): For instance, modeling the reaction process in a tubular  
chemical or biotechnological reactor may require the differential balance of enthalpy 
together with molar balances of several reactants. This leads to coupled (nonlinear) 
partial differential equations (PDE) for the temperature and several concentrations. 
 
- according to the dimension of the space of independent variables: Continuing the   
previous example, in a long tubular reactor one may often neglect the spatial 
dependence in the cross sections which leads to a model depending on the axial variable 
only. 
 
- linear (respectively linearized) and nonlinear models. 
 
- models in which the major phenomenon is oscillation, diffusion, transport, etc. give 
rise to different mathematical properties: hyperbolic and parabolic second order systems 
for example. 
 
• different types of control inputs: 
 
- distributed inputs, i.e. inputs depending on a space variable; these occur very seldom 
in practice. However, sometimes a modeling of inputs as a product of a function of time 
and a function of space is useful depending on the mathematical approach used. 
 
- lumped boundary inputs, which are very frequent in applications. Examples are the 
torque applied to a flexible motor shaft or the feed concentration of a tubular reactor. 
 
- parametric inputs, which are lumped quantities occurring as a parameter in the 
model equation, like the velocity of the forced conductive flow in a tubular reactor. 
 
• different control problems: 
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• -stabilization problems: Of course stabilization, or often just enhancement of 
convergence, is a major control problem. A very large field of DPS control design is 
devoted to this subject, namely the design of elastic mechanical structures like large 
robot arms or buildings like towers and bridges. 
 
• -tracking problems, which are typical for start-up situations: How can a transition 
from     rest to rest can be achieved, possibly in a finite time? As an example, one may 
think of turning a flexible robot arm by a prescribed angle. 
 
• different classes of control design methods: 
 
- -indirect methods (early lumping), which means the approximation of the PDE 
model by a set of ordinary differential equations, which is often of high dimension. This 
lumping may be achieved via approximation of the equations by discretization (either 
physically motivated or by approximating differential operators with difference 
schemes) or via approximation of the solution. In both cases the finite dimensional 
techniques are used for the finite dimensional approximation. 
 
- -direct methods (late lumping), which means working with the PDE model for the 
control design and using approximations only for the implementation of the control or 
for the simulation.  
 
• different mathematical tools employed for the system analysis and the control 
design: examples are state-space methods, semigroups, frequency domain techniques or 
operational calculus. 
 
• different control design approaches: As an example, energy based methods are most 
useful for design of stabilizing controllers. These are combined with tracking controllers 
defined by one of the methods proposed in this chapter to achieve stable tracking. 
 
3. State Space and Semigroup Approach 
 
The semigroup approach is well-suited for the state-space representation of infinite 
dimensional systems. In this section, the involved operators are explicitly given for a 
specific boundary control problem representing a heat exchange process. This enables 
one to formally use well-known concepts like open loop, closed loop, stability, 
stabilization, etc. However, as will be detailed in this section, with such generalizations 
some care must be taken. 
 
3.2. Mathematical Model of a Heat Exchange Process 
 
The semigroup approach is illustrated with a heat exchange process comprising a 
cascade of two coupled heat exchangers (see Figure 1). The first is a parallel flow 
exchanger, the second a counterflow one. Before entering the second exchanger, the 
fluid of the internal tube, which is common to both exchangers and which is to be 
heated, is in contact with the environment.    
 
The deviations of the temperature fields around a stationary profile are used to describe 
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the process: ( ),z tθ  in the inner tube, ( )1 ,z tθ  and ( )3 ,z tθ  in the outer tubes. The 
environmental temperature is assumed constant. Accordingly, 2θ , its deviation from the 
stationary value, is zero. 
 
The velocities 0 1 3,  and v v v  in the three tubes may all be different, while the other 
physical parameters are supposed to be equal for all fluids, and constant. They are the 
heat capacity pc , the density ρ , and the thermal conductivity λ . The mathematical 
model is obtained through energy balances. 
 

 
 

Figure 1: Tubular heat exchangers 
 
Considering sufficiently small variations one obtains the linear mathematical model 
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with 0 on  , , 1, 2,3i j ih i j≠≡ Ω = . (Here the arguments z and t are omitted for the sake of 
readability.) 
 
The initial conditions are 
 

( ) ( ) ( )1 3,0 0, ,0 0, ,0 0z z zθ = θ = θ =  
 
The inflow temperatures of the outer tubes are the two boundary control inputs 1u  and 

2u : 
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The control objective concerns the inner tube temperature between the exchangers, 

( ) ( )1 ,y t L t= θ , and its outflow temperature ( ) ( )2 2 ,y t L t= θ . These two temperatures 
should follow prescribed trajectories, such as to achieve a new stationary regime, for 
instance. 
 
3.2. Representation in State Space 
 
A state space form  
 

( ) ( )d on , for 0x t A x t t= Ω >  
 
of the heat exchanger model can be introduced with 
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where ( )p 1 2 3  and  cλα = ρ Ω = Ω ⊕ Ω ⊕ Ω . Similarly, the control is described by 
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valid on Γ = ∂Ω , the boundary of Ω . The output is defined by  
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where v is a small positive constant.  
 
It is worth noting that the input u and the output y are lumped quantities, with values in 

2R , while the state evolves in an (infinite dimensional) function space X. As most often, 
X is taken to be the space of square integrable functions, which is a Hilbert space. Here  
 

( ) ( ) ( )2 1 2 2 2 3 1 2 3X L L L X X X= Ω ⊕ Ω ⊕ Ω = ⊕ ⊕  
 
and for ( )1 2 3, , ,T Xϕ = ϕ ϕ ϕ ϕ ∈  the inner product is  ,

i i
l k l k iX dϕ ϕ

Ω
= ϕ ϕ Ω∫  and 

the norm is  
 

2
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Finally, to complete the definition of dA , its domain of definition is specified as  
 

( ) {d ,i iA X ′= ϕ ∈ ϕ ϕD  are absolutely continuous, ( )2i iLϕ′′∈ Ω ; 
 

( ) ( ) ( ) ( )1 2 30 0, 2 0, 0, 0}i L L Lμ μ′ ′ ′ϕ = ϕ = ϕ − = ϕ + =  
 
3.3. Abstract Boundary Control System 
 
The evolution equation on a Hilbert space X, given by    
 

( ) ( ) ( ) ( ) ( ) 0, , 0, 0x t Ax t f t x t X t x x= + ∈ > = , (1) 
 
where A is a closed linear operator, admits a formal solution 
 

( ) ( ) ( ) ( )0 0

t
A Ax t T t x T t s f s ds= + −∫ . 

 
Here, AT  is the semigroup associated with the operator A (i.e., A is the infinitesimal 
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generator of AT ) and the domain of A is defined as 

( ) { ( )( ) }0
1lim existst AA X T t I
t

ξ ξ→ += ∈ −D . 

 
The state space representation of the heat exchange process introduced in the previous 
section slightly differs from (1), because the control acts on the boundary. Following an 
approach initiated by Fattorini in 1968, a change of variables and operators allows a 
change of representation: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )d, , 0, 0 0 0t A t Du t t A t x Duζ ζ ζ ζ= − ∈ > = −D    (2) 
 
where 
 

• A is the “extension operator” of dA , which means ( ) ( )dA t A tζ ζ=  for all 

( )Aζ ∈D  and ( ) ( ){ }d b 0A A Fζ ζ= ∈ ⏐ =D D , A is assumed closed and 

densely defined in X. 
 

• D is the bounded “distribution operator” describing the action of the boundary 
control on the state: ( ),D U X∈L , the set of bounded operators from 2U R=  in 

X  such that ( ) ( )d b d, ,Du A F Du B u u U∈ = ∀ ∈D , and D leaves the operator 

dA  unchanged (i.e., ( ) ( )im ker dD A⊂ ). 
 
System (1) is called an abstract boundary control system. If the semigroup AT  exists, its 
formal solution can be written as 
 

( ) ( ) ( ) ( ) ( )
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0
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- 
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