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Summary 
 
Many processes from science and engineering are distributed parameter systems (DPSs), 
that is, they are represented by partial differential equations (PDEs) and boundary 
conditions (BCs) that describe the temporal and spatial variations of the state variables. 
The state estimation problem is, given the available on-line measurement information 
and a dynamic model of the process, to compute the best estimate of the state variables 
at the current time. This problem is particularly acute in DPSs, since complete spatial 
profiles of the state variables are usually nonmeasurable and have to be inferred from a 
limited set of pointwise measurements. System observability and state estimate 
convergence are strongly influenced by the sensor configuration (i.e., number and 
location of the measurement sensors), which must be carefully investigated. 
 
Basically, two major approaches to the state estimation problem in DPSs can be taken: 
 

• Early lumping, in which the PDEs of the process model are first approximated in 
space (e.g., using finite difference or weighted residual methods), and 
conventional state estimation techniques—such as Luenberger observers or 
Kalman filters—are applied to the resulting lumped system. 
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• Late lumping, in which the distributed nature of the process is kept as long as 
possible in the observer/filter design procedure, and approximation techniques 
are applied at the final stage only, in order to compute a solution to the 
observer/filter PDEs. 

 
Early lumping is a straightforward procedure which, however, suffers from the resulting 
problem dimensionality and the lack of physical interpretation. Late lumping is, 
therefore, the preferred approach in this article, which reviews several known methods 
for linear and nonlinear state estimator design, including the extensions of the 
Luenberger observer and Kalman filter concepts to DPSs. Attention is then focused on a 
practical, heuristic method to design nonlinear distributed parameter observers, which is 
based on a physical interpretation of the state estimation error PDE and the injection of 
correction terms in the process model PDEs and BCs in order to ensure the state 
estimate convergence. The main limitation of this method is the lack of rigorous 
analysis of the observer convergence, which is not tractable in the general nonlinear 
case. Therefore, the observer convergence must be investigated carefully in simulation. 
Finally, the application of linear and nonlinear distributed parameter (DP) observers is 
illustrated with a number of case studies reported in the literature, which demonstrate 
the efficiency and wide applicability of this state estimation technique. 
 
1. Introduction 
 
Advanced process monitoring and control usually require information on all the state 
variables. However, the knowledge of the system state variables is limited by the 
number of sensors, the time delay in processing the measurements, and the noise 
corrupting the data. The state estimation problem is—given this limited measurement 
information and a dynamic model of the process—to compute the best estimate of the 
state variables at the current time. This problem occurs in lumped parameter systems 
(LPSs), but is even more acute in distributed parameter systems (DPSs), since complete 
spatial profiles of the state variables are usually nonmeasurable and have to be inferred 
from a limited set of pointwise measurements. This is especially true in the case of 
multidimensional systems, where measurements are usually available on the boundary 
surface only, and the interior state profiles have to be estimated from these surface 
measurements. For instance, such estimation problems arise in thermal and chemical 
engineering processes if component concentrations are unavailable because of the lack 
of appropriate sensors (or long processing times), and the temperature distribution is 
measured at a few points only. Mechanical structures exhibit the same kind of situations 
if deflection or acceleration are known at a few spatial locations only (see Distributed 
Parameter Systems). 
 
The solution to the state estimation problem for DPSs is based on a mathematical model 
of the process, which consists of partial differential equations (PDEs), boundary 
conditions (BCs), as well as sensor or output equations (see Partial Differential 
Equations). Thereby, model parameters and disturbances are assumed to be known or to 
be modeled by additional equations. Most PDE models are derived from first principles, 
and are given in a natural state space representation to which observability analysis and 
design of state estimation schemes directly apply. 
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Owing to the infinite order of DPSs and the different classes of PDE models, care must 
be exercised in designing a Kalman filter or a Luenberger observer. In the course of the 
design procedure, an early or late lumping approach can be used. In the early lumping 
approach, the model partial differential equations are approximated first, using for 
instance modal decomposition, finite difference, or finite element techniques, while the 
state estimator design proceeds with the approximated model equations. In the late 
lumping approach, the distributed nature of the system is kept as long as possible, and a 
state estimation scheme is formulated using PDEs and BCs. In either case, the 
implementation of the state estimation algorithm requires, sooner or later, the spatial 
approximation of PDEs and BCs, leading to a system of ordinary differential equations 
(ODEs) and algebraic equations (AEs) to be solved numerically. 
 
As known from LPS theory, the state estimation problem is much more difficult to 
address in the nonlinear case. In first-principles models, the nonlinearities often reflect 
important phenomena such as reaction rates, adsorption kinetics, and heat transfer by 
radiation. DPSs are then described by nonlinear PDEs and BCs. Neither the early 
lumping nor the late lumping approach enables an exact solution to the state estimation 
problem. The most widely used nonlinear state estimation technique for LPSs (i.e., the 
extended Kalman filter (EKF)), can be applied in its original form to the discretized 
model PDEs. However, this leads to a high-order LPS that lacks a physical 
interpretation of the many design parameters. Alternatively, the EKF can be generalized 
for DPSs, resulting in a set of PDEs that includes an (at least) two-dimensional (in space) 
Riccati equation. 
 
In the DPS literature, state estimation is formulated in a rather comprehensive and 
general manner. Somewhat disappointingly, however, there is still a lack of practical 
methods that could be applied satisfactorily to yet unexplored state estimation problems 
in science and engineering. On the other hand, tremendous progresses in mathematical 
modeling and numerical simulation of DPSs can be observed, which provide optimal 
conditions for the application of on-line state estimation techniques. In this connection, 
the authors have developed a heuristic approach to the design of DP observers, which is 
based on the injection of correction functions in the model PDEs and BCs in order to 
ensure convergence of the state estimates. This design procedure is of general 
applicability for linear and nonlinear DPSs, and has been tested successfully in 
simulation and in real-case studies, including various processes such as furnaces, 
tubular and circulation-loop fixed-bed reactors, distillation columns, and adsorption 
processes. 
 
The outline of this contribution follows the sequence of solution steps to the state 
estimation problem. In the next section, the state space representation of DPSs is 
introduced, in both the deterministic and the stochastic cases. In addition, a brief 
account of DPS observability and the selection of optimal sensor locations is given. The 
discussion is restricted to practical results, which can be useful in designing a DP state 
estimator. Section 3 is devoted to optimal estimation and Kalman filtering. Thereby, a 
distinction is made between the early lumping approach and the late lumping approach 
to the design of extended Kalman filters for nonlinear DPSs. In Section 4, Luenberger’s 
concept of state observer is extended to DPSs. The design of the observer correction 
terms follows a late lumping approach and is described for linear and nonlinear systems. 
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Finally, the application of linear and nonlinear DP observers is illustrated with a number 
of case studies reported in the literature, which demonstrate the efficiency and wide 
applicability of this state estimation technique. 
 
2. State Estimation Problem 
 
In order to introduce the state estimation problem for DPSs, it is natural to consider the 
analogous problem for finite dimensional linear time-invariant LPSs first: 
 

0
( ) ( ) ( ) (0)d t A t B t

dt
= + =

x x u x x ,           (1) 

 
( ) ( )t C t=y x  (2) 

 
where the matrices n nA ×∈ℜ , n pB ×∈ℜ , and m nC ×∈ℜ  are constant. 
 
This classical problem can be formulated as follows: is it possible, based on model (1)–
(2), to reconstruct the state x(t) from the input u(t) and the output measurements y(t)? 
The answer to this question is affirmative if the system is observable. This property can 
be checked numerically using algebraic conditions on A and C (e.g., a rank test on the 
observability matrix 1[ ...( ) ]T T T T n TC A C A C− ). 
 
Linear time-invariant DPSs can also be described by an abstract state space 
representation according to (1) and (2) in Hilbert space. In this case, the state x(z,t), the 
input u(z,t), and the output y(z,t) do not only depend on time t but also on a spatial 
coordinate z. Then, A, B, and C are differential or integral operators with respect to z. 
This abstract representation allows an extension of the observability conditions derived 
for LPSs to DPSs. 
 
In practice, however, DPSs are usually nonlinear and are described by first-principles 
models. In this latter case, a rigorous analysis becomes difficult, and physical as well as 
mathematical properties of the DPS model have to be used for observability assessment 
as well as state estimator design. 
 
2.1. State Space Model 
 
Based on first principles (e.g., mass, energy, and momentum balances), modeling of 
DPSs results in a natural state space representation, which, in many cases, consists of a 
system of parabolic or hyperbolic PDEs in the form: 
 

( , , , ,...) (0, )t z zz z L
t

∂
= = ∈

∂
x x f x u x x            (3) 

 
{ }( , , ,...) 0,z z L= ∈0 g x u x            (4) 
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( ,0) ( ) [0, ]z z z L= ∈0x x            (5) 
 
For the sake of simplicity, a one-dimensional space domain with fixed boundaries is 
considered. In PDEs (3) and BCs (4), xz and xzz represent first- and second-order partial 
derivatives of the state x(z,t) with respect to the spatial coordinate z. In (3), f is a vector 
of functions of the state and several of its spatial derivatives as well as of the input u(z,t), 
which is distributed over the length L of the DPS. At the boundaries z = 0 and z = L, the 
balance equations reduce to algebraic BCs (4). There, the function vector g depends on 
the boundary inputs u(0,t) and u(L,t) at z = 0 and z = L, respectively. Note that, in some 
applications, these model PDEs and BCs are supplemented by additional ODEs and/or 
AEs (e.g., ODEs describing a LPS interacting with the DPS). Moreover, it is assumed 
that the DPS model (3)–(5) is well posed and has a unique solution. 
 
For example, if x(z,t) represents the temperature profile T(z,t) of a rod isolated at both 
ends, PDE (3) and BCs (4) could take the form: 
 

( / ) (4 / )( ) (0,1)t zzx c x d c u x zλ ρ α ρ= + − ∈            (6) 
 

{ }0 0,1zx z= ∈            (7) 
 
where d is the diameter of the rod (small with respect to normalized length L = 1, so that 
the temperature distribution is assumed to be uniform in the cross-section), λ is the heat 
conductivity, ρc is the heat capacity, α is the heat transfer coefficient, and u(z,t) is a 
cooling or heating profile over z. 
 
The incomplete knowledge of the initial profile x0(z) in (5) is the main reason for the 
existence of a state estimation problem. Otherwise, the complete state profile x(z,t) at 
the current time t could be determined by numerical solution of the model Eqs. (3)–(5). 
However, state reconstruction based on a pure simulation also requires exact knowledge 
of all the functions and parameters in PDEs (3) and BCs (4). This assumption excludes 
modeling uncertainties and the presence of disturbances in the DPS. 
 
Consideration of these problems leads to the design of state estimators that combine in 
an appropriate way the process model (3)–(5) with the available measurement 
information. Under practical conditions, it can be assumed that the state x or functions 
hi(x) of the state, respectively, are measured in spatial points zi, i = 1, …, m. The 
corresponding output or sensor equations define the output or measurement vector: 
 

1 1( ) [ ( ( , )),...., ( ( , ))] [0, ]T
m m it h z t h z t z L= ∈y x x            (8) 

 
In many practical applications, the sensor model (8) reduces to pointwise measurements 
of some of the state variables xi, i = 1, …, n at points zj, j = 1, …, m (e.g., hj(x(zj,t)) = 
xi(zj,t)). In examples (6) and (7), the temperature could be measured in m points 
distributed along the rod, that is: 
 

( ) ( , ) [0, ]i i iy t T z t z L= ∈    i = 1, …, m           (9) 
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Eqs. (3)–(5) and (8) constitute a deterministic representation of the DPS and the 
associated measurements. Under these assumptions (i.e., neither process disturbances 
nor measurement noise), the solution of the state estimation problem requires the design 
of an observer with distributed parameters. On the other hand, if the DPS as well as the 
measurements are corrupted by noise, which can be modeled by additive zero-mean, 
normally distributed, white noise vectors δ(z,t), and ε(t) entering in the right-hand side 
of Eqs. (3), (4), and (8), respectively: 
 

( , ) ( ( , ), ( , ), ( , ), ( , ),...)
( , ) (0, )

t z zzz t z t z t z t z t
z t z L

=

+ ∈

x f x u x x
δ

           (10) 

 
{ }( , , ,...) ( , ) 0,z z t z L= + ∈0 g x u x δ            (11) 

 

1 1( ) [ ( ( , )),...., ( ( , ))] ( ) [0, ]T
m m it h z t h z t t z L= + ∈y x x ε            (12) 

 
then a stochastic state estimation problem has to be solved. In this case, a Kalman filter 
with distributed parameters is used to reconstruct the state x(z,t) of the DPS. 
 
In practice, the measurements are often obtained at discrete times tk (k = 1,2, …) only, 
so that Eq. (12) becomes: 
 

1 1( ) [ ( ( , )),...., ( ( , ))] ( ) [0, ]T
k k m m k k it h z t h z t t z L= + ∈y x x ε            (13) 

 
2.2. Observability and Optimal Sensor Location 
 
The design of a state estimator assumes system observability, a property that is closely 
related to the selection of an appropriate sensor configuration (i.e., number and location 
of the measurement sensors in the spatial domain under consideration). More precisely, 
a DPS is said to be observable if every initial state x(z,0) can be determined based on 
the knowledge of the system input u(z,t) and measurement vector y(t) over some finite 
time interval [0,T]. The derivation of observability conditions for certain classes of PDE 
systems has been the subject of very active research. For instance, for first-order 
hyperbolic systems, the observability conditions require that each characteristic line 
intersects a sensor and that a lumped observability condition is satisfied along these 
characteristic lines. For second-order linear partial differential equations, observability 
conditions can be stated in an approximate way using modal analysis (i.e., 
decomposition in terms of the system eigenfunctions) (see Controllability and 
Observability of Distributed Parameter Systems). 
 
Unfortunately, for general nonlinear DPSs, formal observability results are much more 
difficult to derive, and it is necessary to resort to some kind of approximation and/or 
heuristic approach to assess the system observability. 
 
One obvious possibility is to use linearization and spatial discretization techniques (e.g., 
finite differences, finite elements), in order to transform the original DPS into a (usually 
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high-order) linear LPS to which classical observability analysis directly applies. 
However, the properties of nonlinear systems can only be assessed locally through 
linearization. Furthermore, sensor location criteria based on the condition number of the 
observability matrix of the linearized and discretized model depend on the size of the 
discretized state vector as well as on the discretization technique. Hence, these criteria 
are in some instances difficult to interpret, or even subject to numerical errors. 
 
Besides this seemingly natural approach, other more practically oriented procedures 
have been proposed, such as the selection of a sensor configuration that optimizes the 
convergence of the state estimator. In particular, the sensor configuration can be 
selected so as to minimize an optimality criterion based on the error covariance matrix 
of a Kalman filter. The main drawback of this approach is that it requires the design of a 
filter prior to the selection of the sensor number and locations, and an iterative 
procedure involving a relatively lengthy manipulation of error covariance matrices in 
order to determine the “optimal” sensor configuration. 
 
A basic approach to the selection of a sensor configuration, which has proved very 
useful in many applications, is based on the knowledge of the dynamic behavior of the 
DPS, which can be investigated in simulation. If realistic scenarios are considered for 
the DPS simulation, the visualization of spatial profiles can be used for the selection of 
the number and location of the sensors in the DPS. However, the simple consideration 
of the numerical values taken by the state variables in the measurement points can be 
misleading. In fact, it is interesting to maximize the information content conveyed by 
the measurement sensors and to minimize potential redundancies. In this connection, a 
test of independence between the sensor responses is proposed to determine the spatial 
regions where the sensors should be located. 
 
More specifically, let 1( ,..., , )mz z tM  denote a set of sensor responses: 
 

[ ]1 1 1( ,..., , ) ( ( , ))... ( ( , )) T
m m mz z t h z t h z t=M x x            (14) 

 
The Gram determinant: 
 

1 1 1
0

( ,..., ) det ( ,..., , ) ( ,..., , )
T

T
m m mz z z z t z z t dtγ

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫M M            (15) 

 
is maximized with respect to the sensor locations z1, …, zm in order to determine the 
best sensor configuration. This independence criterion is not meant to answer 
completely the problem of sensor location and system observability, but can be 
combined advantageously with simulation studies, process knowledge, experience and 
intuition, which remain important decision factors! 
 
3. Optimal Estimation and Kalman Filtering 
 
Optimal estimation techniques allow a minimum error estimate (according to some 
stated criterion of optimality) of the state to be obtained based on a dynamic model of 
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the process, and knowledge of the statistics of process and measurement noises. The 
most common optimal estimation technique is the unbiased, minimum-error variance 
filter developed by Kalman for reconstructing the state of linear LPSs. In this section, 
the development and application of optimal estimation techniques to DPSs are briefly 
discussed. As mentioned in the introduction, the design of a state estimator for a DPS 
can proceed in either of two ways: early lumping or late lumping. The early lumping 
approach, which makes use of well-known techniques developed for LPSs, is first 
presented on the basis of examples (6) and (7). Then, attention is paid to the more 
general, late lumping approach. 
 
- 
- 
- 
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