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Summary 
 
The presence of non-negligible time delays in a system leads to more complex analysis 
than in the finite dimensional case (i.e., without delay). This is also true for the 
controllability properties, central to automatic control. Indeed, this ubiquitous concept 
splits into many different notions when extended to the case of systems with delays. 
Instead of trying an impossible comparison between these notions, few notions which 
showed to be particularly useful in practice are detailed. Essential here is the use of 
feedforward methods to achieve tracking with stability. Two examples are treated in 
some detail, a first order system with delayed input and a delay system model for the 
torsional vibrations of a flexible rod modeled by an undamped wave equation. 
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1. Introduction 
 
The occurrence of delays in engineering systems is manifold. Transportation of matter 
or information and propagation of electrical signals on transmission lines all generate 
delays. When the amplitudes of these delays cannot be neglected, compared to the 
process “response time”, a delay system model should be used and controllers should be 
designed based on this infinite dimensional model. 
 
A very simple, though often useful, example of a delay system is 
 
 ( ) ( ) ( )y t ay t bu t h ϖ= + − +  (1) 
 
where y(t) is the measured output, u(t) is the control input, h > 0 is the amplitude of the 
delay, and ϖ is a constant disturbance. If a > 0, the system is unstable. This model is 
quite frequently used in industry, in particular if only poor knowledge is available from 
impracticable physical modeling. The multi variable generalization of this simple model 
yields a class of delay systems which are relatively easy to control (in the sense that the 
methods used are quite similar to those for systems without delays), yet arise quite 
frequently in practice. They are, therefore, called quasi-finite systems. 
 
More complex models involve delays on the state (or the output) as well, and possibly 
on the derivative of the state. To deal with these, a more general structural property will 
be introduced (bearing a strong similarity with differential flatness of nonlinear 
systems): the δ-freeness. As differential flat systems, δ-free systems admit elegant 
solutions of tracking problems involving two main steps. First, open loop control laws 
are obtained from the reference trajectories without integrating any differential 
equation. Then, corrective laws are added in order to stabilize the evolution in a vicinity 
of these reference trajectories. 
 
For simplicity of exposition, only single delay systems will be considered here (i.e., all 
delays are multiples of a single one), although the corresponding tools can equally well 
be used to treat multiple delays (with several “incommensurate” delays, that are linearly 
independent over the field Q of rational numbers). Moreover, due to lack of space, only 
linear systems are considered. 
 
The structure of the article is as follows. The second Section provides some insight in 
the occurrence of delays in distributed parameter models. The third Section is devoted 
to controllability notions, where it is seen that the picture is more complicated than for 
systems without delays. Several approaches, based on different mathematical tools, are 
considered to this end. Quasi-finite systems are treated in Section four. Their 
controllability properties are discussed. Moreover, stabilization and tracking methods 
are exposed and illustrated by a simulation example. Finally, a flexible rod example 
based on the undamped wave equation is treated in Section five. This example 
illustrates how delay system models can be derived from partial differential equations, 
how this can lead to systems involving delayed state derivatives, and how δ-freeness 
can be introduced and exploited for the control of these more general distributed 
parameter systems. 
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2. Examples of Delay Systems Derived from Distributed Parameter Systems 
 
A delay is naturally introduced in a model when there is a time lag between the control 
action and its influence on the system. Similarly, delays occur in an obvious manner if 
non-negligible measurement processing time is taken into account. In these cases, one 
readily obtains models of the quasi-finite type introduced in section four. 
 
Delay system models can also be derived from some distributed parameter systems. 
Typically, such situations occur through the “transport equation” 
 

 0, (0, ), 0q qv z l t
t z

∂ ∂
+ = ∈ >

∂ ∂
 (2) 

 
where q(z, t) may play the role of a reactant concentration or the temperature in a tube 
with plug flow (without mixing) in direction of increasing z. The parameter ν > 0 then 
represents the velocity of the flow, supposed to be constant. Similarly, q may stand for 
the thickness of a steel strip in a rolling mill transported with velocity ν or the height of 
matter transported with a conveyer belt with speed ν. 
 
Often one may act on the system at z = 0, for example, by controlling the amount of 
material put on the belt at this place or the inflow concentration or temperature of the 
tube. This leads to a boundary condition of the type q(0, t) = u(t). Suppose the quantity 
of interest is y(t) = q(l, t). Then the value y(t) is given by y(t) = q(0, t − l/ν), which 
means one obtains the (elementary) delay system of the form 
 
 ( ) ( / ), 0y t u t l v t= − ≥  (3) 
 
which just realizes a delay of amplitude l/ν. The solutions of (2) are constant along the 
lines z− νt = const. in the z− t-plane, and can, thus, be written 
 
 0( , ) ( ) ( ) ( / ) ( )q z t q z t h z t u t z h t zν ν ν ν= − − + − −   
 
where q(z, 0) = q0(z), z ∈ [0, l] is the initial condition of (2) and h is the Heaviside 
function (the value of which is 0 for t < 0 and 1 for t ≥ 0). It follows that u(t) = q0(−νt), t 
∈ [−l/ν, 0] is the corresponding initial condition of the delay system (3). Both models 
have functional initial conditions (consisting of an infinite number of values). This is 
why they are called infinite dimensional systems. 
 
This kind of transport phenomena is at the basis of many occurrences of delays in 
technological processes. For example, the tube considered may provide the inflow of an 
isothermal chemical stirred tank reactor with constant reaction volume in which a 
reactant is consumed through a first order chemical reaction. Then the concentration x 
of the reactant satisfies 
 
 ( ) [ ( / ) ( )] ( )x t a u t l x t kx tν ϖ= − − − +  (4) 
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where u(t) is the feed concentration at the input of the tube, while y(t) = u(t −l/ν) is the 
concentration at the inflow of the reactor. The parameter a is proportional to the flow 
velocity ν in the tube and k describes the reaction rate. Equation (4) is of the form of (1) 
with delay τ = l/ν. The perturbation ϖ models additive uncertainty. 
 
As has been seen, the transport equation introduces a delay in an elementary fashion. 
Another class of delay phenomena is described by the undamped wave equation. It 
gives rise to so-called neutral delay systems, which are more difficult to control. An 
example of this type is an elastic rod undergoing torsional deformations, like a long 
motor shaft with a heavy tip load. This is treated in Section 5. 
 
3. Controllability Notions for Linear Delay Systems 
 
Here is a brief recall of controllability of finite dimensional systems, which admits 
various equivalent characterizations. Consider a single-input, time invariant finite 
dimensional linear system in state space form 
 
 ( ) ( ) ( )x t Ax t bu t= +  
  
with x(t) = (x1(t), …, xn(t)) the state, u(t) the input, A ∈ Rn×n , b ∈ Rn×1. Its controllability 
can, amongst others, equivalently be described by 
 
Kalman’s criterion:  
 

1( , , ..., ) ,n
Rrk b Ab A b n− =  

 
the Hautus-Popov-Belevitch criterion: , [ | ] ,Cs C rk sl A b n∀ ∈ − =  
or the existence of a controller canonical form: 
 

1 2 1 1 1, ..., ,n n n n nz z z z z z z uα α−= = = + + +  
 
The generalizations to delay systems of the three characterizations of controllability 
recalled above do no longer coincide. Some of the many possible generalizations will be 
discussed now. 
 
3.1 Various approaches 
 
Many different approaches for the study of time delay systems have been developed. In 
order to keep the exposition simple and brief, we only quote those most widely used. 
 
•   In the so-called systems over rings approach a system is viewed as a quadruple (A, B, 
C, D) of matrices. In the finite-dimensional case, the entries of those matrices are real 
numbers. In the case of delay systems, they stem from the ring R[δ] of polynomials in 
the shift operator δ (also called delay operator) with real coefficients. The delay 
operator δ of amplitude h is defined by (δxi)(t) = xi(t − h). The quadruple of matrices is 
then denoted as (A(δ), B(δ), C(δ), D(δ)), and the typical state-space equation reads 
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 ( ) ( )x A x B uδ δ= +  
  
 ( ) ( )y C x D uδ δ= +  
  
 where A(δ) = A0 + A1δ + ··· + Aνδν, B(δ) = B0 + B1δ + ··· + Bµδµ, C(δ) = C0 + C1δ + ··· 
+ v

vC δ ,  
 
D(δ) = D0 + D1δ + ··· + D μ

μδ , which is the same as 

 10

10

( ) ( ) ( ) ( ) 
          ( )  ( ) ( )µ

x t A x t A x t h A x t h
B u t Bu t h B u t µh

ν ν= + − + + −

+ + − + + −
 (5) 

 
0 1

0 1

( ) ( ) ( )
         ( ) ( ) ( ) ( )µ

y t C x t C x t h
C x t h D u t D u t h D u t µhν ν

= + − +

+ − + + − + + −
 (6) 

 
with state x(t) = (x1(t), …, xn(t)), input u(t) = (u1(t), …, um(t)), Ai ∈ Rn×n, i = 0, …, ν, Bj 
∈Rn×m,  j = 0, …, µ, Ck ∈ Rp×n, k = 0, …, ν , Dl ∈ Rp×m, l = 0, …,μ . 
 
Several controllability properties have been extended to the systems over rings, such as 
Kalman’s criterion (giving rise to the so-called “weak controllability”) and Hautus-
Popov-Belevitch’s one (giving rise to the so-called “strong controllability”). These 
notions are defined mainly by generalizing the matrix criteria known from the finite 
dimensional case, as will be detailed in sections 3.2 to 3.5. 
 
• In the functional analytic approach the values of the state belong to a function space, 
instead of R as in the finite dimensional (delay free) case. 
 
More precisely, considering a system with delays: 
 

 0
0

( ) ( ) ( )i
i

x t A x t ih B u t
ν

=
= − +∑  (7) 

 
where h ∈ R, x(t) ∈ Rn, u(t) ∈ Rm, A0, ..., Aν ∈ Rn×n, B0 ∈ Rn×m, the state of the system is 
taken as 
 
  ( ) ( ( ), (.))tz t x t x=  
  
where ∀t  0, xt(θ) = x(t + θ) for θ∈ [−h, 0], and xt is a square integrable    function (xt 
∈ L2([−h, 0], Rn)). 
 
The operator eAt of systems without delays (yielding the solution of x = Ax + Bu) is 
generalized to a so-called “strongly continuous semigroup” S(t), being an operator 
mapping an initial condition to a particular state. The evolution of the system is then 
described through the variation of constants formula 
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 0
0

( ) ( ) ( ) ( ) for 0
t

z t S t S t B u d tζ τ τ τ= + −∫  

  
where the initial condition ζ is defined by 
 
  0 1 1 2

0(0) and   [ , 0] ( ) ( ), where   ([ , 0], ).n nx R h x L h Rζ θ θ ζ θ ζ= ∈ ∀ ∈ − = ∈ −  
  
Let A  be the “infinitesimal generator” of S(t): This is the generalization of the matrix A 
for the semigroup eAt of a finite dimensional system. It is defined as the limit 
 

       
0

1lim ( ( ) ).Az S z z
ε

ε
ε+→

= −  

  
      with appropriate domain (such that the limit exists). 
 
The reachability subspace is the subspace of the state space which is reachable by 
means of a square integrable control. 
 
Various controllability notions have been defined in this setting, namely the spectral 
controllability (discussed below), the exact controllability, where the reachability 
subspace is the whole state space, and the approximate controllability, where the 
reachability subspace is dense in the state space. With these notions, a system is 
considered to be controllable if there exists a control allowing one to steer the system 
from any one state to any other state. The difference with finite dimensional systems, 
thus, resides in the definition of the state space. 
 
• In the behavioral setting, a system is considered to be given by a set of trajectories, 
called a behavior. Often, the considered trajectories are composed of C∞ functions. The 
(behavioral) controllability is then defined as the possibility of concatenating any two 
system trajectories (see section 3.3). 
 
3.6. Weak Controllability 
 
This notion is one of the weakest controllability notions for delay systems. If a system is 
not weakly controllable, there is a severe obstruction to control, which is related to the 
existence of an autonomous subsystem. Therefore, this concept is useful mainly for 
characterizing non-controllability. 
 
The definition of weak controllability is obtained by generalizing Kalman’s criterion in 
the system over rings approach, as follows. Equation (5) is called weakly controllable if 
 
 1

[ ]( ( ), ( ) ( ), ..., ( ) ( ))n
Rrk B A B A B nδ δ δ δ δ δ− =  

  
where R[δ] is the ring of polynomials in the operator δ, and rkR[δ] means that the rank is 
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determined through linear combinations with coefficients in R[δ]. This notion 
corresponds to the absence of any “fixed trajectory” of the system (i.e., of a solution of 
an autonomous equation) as is illustrated on the following example. 
 
Example 3.1 
 
The system 1 2 2( ) ( ), ( ) ( ) ( )x t x t h x t x t u t h= − = + −  does not satisfy the rank condition,  
 
 

since rkR(B(δ), A(δ)B(δ) =
0 0

2Rrk
δ δ
⎛ ⎞

<⎜ ⎟
⎝ ⎠

. There is a “fixed trajectory”, because x1 is 

the solution of the autonomous equation 1 1( ) ( )x t x t h= −  which cannot be influenced by 
the control u. 
 
Example 3.2 
 
Take a simple example of the linearized equations for a satellite on a circular 
equatorial orbit 
 

 
2

0 1 0 0 0 0
1 03 0 0 2( ) ( ) ( )
0 00 0 0 1
0 10 2 0 0

x t x t u t h

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥Ω Ω⎢ ⎥ ⎢ ⎥= + −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

− Ω⎢ ⎥ ⎣ ⎦⎣ ⎦

  

 
with x = (x1, x2, x3, x4) = (r, r , θ,θ ) and u = (u1, u2). Here r and θ designate the polar 
coordinates of the satellite in the equatorial plane, Ω is the angular velocity, supposed 
constant, u1 represents radial thrust, u2 tangential thrust, and h is the communication 
delay (supposed constant) between the earth and the satellite. 
 
Suppose now that the tangential thrust is not working, so that the system equations 
read: 
 
 1 2( ) ( )x t x t=  (8a) 
 
 2

2 1 4 1( ) 3 ( ) 2 ( ) ( )x t x t x t u t h= Ω + Ω + −  (8b) 
 
 3 4( ) ( )x t x t=  (8c) 
 
 4 2( ) 2 ( )x t x t= − Ω  (8d) 
 
Subtracting Ωx4(t)/2 on each side of Eq.(8b)  yields 
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 2
2 4 1 4 1

1 3( ) ( ) 3 ( ) ( ) ( )
2 2

x t x t x t x t u t h− Ω = Ω + Ω + −   

 
Now, introducing 2 4 1 1 4( ) (1/ 2) ( ) ( ) (3 / 2 )(2 ( ) ( ))x t x t u t h x t x tξ = − Ω − − = Ω Ω +  and 
differentiating leads to 
 

 2
2 2

3( ) 3 ( ) ( 2 ) ( ) 0
2

t x t x tξ = Ω + Ω − Ω =  

  
The quantity 2Ωx1(t) + x4(t) = 2Ωr(t) + θ(t) remains constant whatever the radial thrust 
may be. The physical interpretation of this invariant, or “fixed trajectory”, is that the 
radial thrust cannot modify the angular momentum. 
 
- 
- 
- 
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