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Summary    
 
Control systems are ubiquitous in the modern world, where the instruments of our 
scientific and industrial society are applied to an increasingly wide range of processes. 
Such control intervention is undertaken with many different objectives in mind; e.g., 
“steering” the process to a desired state, minimizing the effects of various disturbances 
tending to move the system in undesirable directions, stabilizing systems which are 
inherently unstable or improving the stability properties of systems with weak stability 
characteristics, etc. While it is rarely possible, in a mathematical model, to account for 
all of the factors affecting the performance of a real world system, mathematical 
modeling of the system is, nevertheless, ordinarily essential for efficient and effective 
design and implementation of control procedures. In this chapter a particular class of 
mathematical control systems, often described in the literature as distributed parameter 
systems is described. We review the properties of these systems and compare them with 
those of other types of mathematical control systems. Additionally, we provide some 
indication how these distributed parameter systems function in the modeling of a variety 
of systems important in applications. Because the range and variety of theorems is very 
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great, each with its own set of specialized assumptions, we adopt a narrative approach to 
our account here rather than a “Theorem-Lemma-Proof” framework more suited to 
detailed discussion within a more limited context. 
 
1. Introduction : Mathematical Control Systems  
 
The subject of control of distributed parameter systems is vast; the available literature 
consists of literally thousands of articles on every conceivable aspect of what, is by, its 
very nature, a subject of great diversity. Any representative bibliography would, 
literally, fill all of the pages allotted to us for this chapter. In 1978 the author attempted 
a review of certain aspects of the subject as it had been developed to that time, now 
almost a quarter century ago. The bibliography, very incomplete even then, lists over 
one hundred contributions, including earlier reviews with even more extensive 
references. A comparable, but more recent, review has been provided by L.W.Markus. 
At the present writing there exists a wide variety of comprehensive texts treating 
various aspects of the subject with varying degree of completeness and mathematical 
sophistication. Even so, and quite understandably, none of these works attempts a 
complete treatment of the whole subject of distributed parameter systems control. 
 
Inevitably, then, certain subjects are emphasized at the expense of others.  In this 
chapter, for example, we do not discuss at all the very important question of system 
identification in the distributed parameter context-a subject on which literally hundreds 
of first rate books and articles have been written.  We say very little about frequency 
domain approaches to distributed parameter systems, to which whole schools of 
academic and industrial researchers have addressed their efforts. An extensive literature 
has been devoted to the question of the existence, design etc., of state estimators and 
compensators, particularly finite dimensional compensators, in the context of infinite 
dimensional systems; we have little to say about this as well. We deal primarily with 
what we regard (subjectively, of course) as the “core” of the control theory of 
distributed parameter systems; the controllability and stabilizability theory of systems 
governed by partial differential and functional –differential equations. 
 
A mathematical control system is a dynamical system involving state variables, control 
variables, disturbance variables, measurement variables, measurement errors, and 
system parameters. Complementing these are sets of dynamical equations serving to 
determine system evolution over specified intervals of time or regions of space, 
reference criteria, such as target states to be reached or trajectories to be tracked, etc. 
These are more possibilities than we can enumerate. We will begin our discussion with 
a brief recapitulation of finite dimensional systems with a view to contrasting these with 
infinite dimensional, or distributed parameter systems, which are the main subject of 
this chapter. 
 
1.3 Finite Dimensional Systems 
 
Here the state space is taken to be nE , the standard n-dimensional vector space; state 
vectors take the form  
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the kw  constituting the state components. Each of the other variables and parameters 
would have a similar representation. If the process is continuous in time the dynamical 
equations would typically be ordinary differential equations involving the state, control, 
and disturbance variables: 
 

( ), , .d
dt

=
w f w u v  

 
In some contexts (for example, in the economic context with states corresponding to 
periodically reported economic quantities) the time variable might be taken to be 
discrete, so that we would have a recursion, or difference equations instead of a 
differential equation: 
 

( )1 , ,k k k k+w f w u v= .                       
 
The most widely studied class of finite dimensional control systems is the class of 
systems for which the governing equation takes the form of a linear system of 
differential equations 
 

,d
dt

=
w Aw B u+                          

 
wherein the state vector n∈ =w E W  and the control vector m∈ =u EU  for some 
positive integers n, m; A and B are then n n×  and n m×  dimensional matrices, 
respectively. Such a system is controllable if and only if, given 0T >  and arbitrary 
initial and terminal states 0 1, , n∈w w E  there is a control function 2( ) (0, ; )mt L T∈u E   

(i.e., norm square integrable functions with values in mE )such that the solution of the 
indicated system of differential equations determined by 0w  and ( )tu , i.e., 
 

( ) ( ) ( )0 0

t ttt e e d−= + ∫ AAw w Buτ τ τ , 

 
satisfies ( ) 1T =w w . As developed in the indicated references, this is equivalent to a 
number of other conditions. A purely algebraic necessary and sufficient condition for 
controllability is  
 

2 1[ ... ]vrank n− =B AB A B A B  
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for some non-negative integer v n≤ . Another necessary and sufficient condition is that 
the so-called controllability Grammian matrix 
 

( ) ( )
0

T t t
T e e d

∗− −∗= ∫ A AΒΒG τ τ τ  ,                       

 
which is clearly self-adjoint and non-negative, should in fact be positive definite. The 
matrix TG  has the further important property that, assuming positive definiteness, and 
hence invertibility, the control of least norm “steering” 0w  to 1w  during the interval 

[ ]0,T  is given by  
 

( ) ( ) ( )1
1 0,t n

Te e
∗ −∗ −= −A Au B z z w w Eττ = G T ∈ .                         

 
In linear system theory an important role is played by the dual observed system. In 
general a linear observed system takes the form 
 

( ) ( ),d t t
dt

= =
z Cz y O z    .                       

 
The first being the governing differential equation for the system, while the second 
indicates a linear output, measurement or observation relation, giving the observation 

( )ty  in terms of the state trajectory ( )tz . When the matrix C coincides with ∗−A  and 

matrix O coincides with ∗B  the resulting linear observed system 
 

, ( ) ( )d t t
dt

∗ ∗= − =
z A z y B z                                       

                                
is the dual linear observed system for the (primal) control system originally introduced. 
A general linear observed system ( ) ( ),d

dt t t= =z Cz y Oz  is observable if the output 

( )ty , [ ]0,t T∈ ,  determines the initial state ( ) 00 =z z . That is the case if and only if the 
observability Grammian matrix 
 

0
.

tT t
T e dt

∗ ∗= ∫ O OC CH e       

                   
is positive definite, in which event 
 

( )0 0
.

T te t dt
∗ ∗= ∫z O1

TH– C                        

 
When ∗= −C A  and ∗=O B  it is easy to see that positive definiteness of TH  holds just 
in case TG  is a positive definite as well and we conclude that the primal linear control 
system is controllable if and the dual linear system is observable. This may be 
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considered to be fundamental principle of the theory of linear control systems. 
 
1.4 Function Spaces as System Spaces 
 
In the case of finite dimensional control systems we typically have  
 

, , ,n m p q∈ ∈ ∈ ∈w R u R R y Rv ,              
 
etc, the finite dimensional spaces , , ,n m p qR R R R , etc., serving, respectively, as the 
state space, control space, disturbance space, measurement space, etc.(henceforth we 
will refer to these as the system spaces to avoid excessive repetition). Little more needs 
to be said about these in the finite dimensional case; any questions of regularity 
(smoothness) of system trajectories arise only as questions of regularity with respect to 
the time variable. In the case of distributed parameter systems with spatial coordinate 
variables v⊂x R∈R  and system variables and /or parameters expressed as functions 
of x  and t, the situation is markedly different and we have to provide a much more 
detailed specification of the system spaces in order to admit an adequate treatment of 
system properties and behavior. 
 
Let us begin by supposing the spatial region of interest to be closed region ⊂ RR v . (In 
some cases this spatial region might vary with t but this is relatively uncommon and we 
will not let that possibility complicate our discussion here). The region R  might be 
finite or infinite in extent, but we will suppose that, in all circumstances, its boundary is 
piecewise smooth, being the union of smooth v-1-dimensional manifolds, most typically 
points in the case v = 1 , curves in the case v = 2 and two-dimensional surfaces in the 
case v = 3. 
 
The space ( ) ( )0≡C CR R  consists of all functions ( )f x  defined and continuous for 

v⊂x R∈R . If it  is necessary to specify the range dimensions, μ, of f, we will  write 

( )μC R  or ( )0
μC R . This is a complete normed linear space, or Banach space, with the 

norm 
 

( ){ }0 sup
μ

=f f x
x∈R

, 

 
where ( ) μ

f x  is an appropriate norm, e.g., the standard Euclidean norm, for vectors in 

μR . Spaces whose elements have greater smoothness than general elements of 0 ( )C R  

are the spaces ( )kC R , or ( )k
μC R , consisting of functions ( )f x  such that all partial 

derivatives of ( )f x  of order , 0 ,j j k≤ ≤  lie in 0 ( )C R  (in fact, they must then lie in 

( )k j−C R ). These also are Banach spaces with norm kf  taken to be the largest norm in 
0 ( )C R  of any partial derivative of ( )f x  of order , 0 .j j k≤ ≤  
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Hilbert spaces, i.e., complete inner-product spaces play a very strong role in the study 
of distributed parameter systems, primarily because the inner product structure relates in 
a very natural way to a variety of kinetic and potential energy forms.  These energy 
forms, combined with energy conservation or dissipation properties, are often 
indispensable in studying existence and regularity properties and establishing stability 
properties of distributed systems. With R a region as described above, the Sobolev 

spaces, ( )mHμ R , consist of certain μ-dimensional functions f defined on R, possessing 
partial derivatives of all orders less than or equal to m; these partial derivatives may 
exist in a distributional, rather than the classical sense.  For ease of exposition we 
suppose that Df represents a partial derivative operator on f: 
 

1 2
1 2

p

pp p μ
μ

∂
≡
∂ ∂ ∂

fDf
x x x

 ,          

                            
where kp  are non-negative integers whose sum is the non-negative integer p. For any 

such differential operator the order of D is p=D . The function ( )m
μ∈f H R  are 

precisely those for which the m-th order Sobolev norm is finite, i.e., 
 
 

( ) 2

m
d

≤
≡ ∞∑ ∫f Df x x

R
D

< . 

 
Here the norm ( )Df x  is simply the Euclidean norm in μR  of the vector ( )Df x  and 

dx  indicates the standard measure in μR . When m = 0 the space ( )m
μH R  reduces to 

the familiar Lebesgue space 0 2( ) ( )Lμ μ=H R R . (In the sequel we will suppress the 

dimensional subscript μ, unless it is necessary to specify or refer to that dimension, and 

just write ( )mH R .) The Sobolev inner product in ( )mH R  is the bilinear (sesquilinear) 
if the functions involved have complex values) form 
 
 

( ) ( ), , ,
m

f d
≤

= ∑ ∫ Df x Dg x xg
R

D

                                     

 
where ( ) ( ),Df x Dg x  in the integrand is just the standard inner (“dot”) product in 

μR , again with the usual modifications of the values involved are complex. This form 
possesses the standard inner product properties and admits the identity , .=f f f   
 
Spaces with very similar properties, often closely connected with significant 

applications, can be obtained by replacing the sum ( ) 2
m≤∑ D Df x  with particular 
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non-negative quadratic forms in the partial derivatives. For example, in two dimensional 

linear elasticity with displacement state vector 
( , )
( , )

u x y
v x y
⎛ ⎞
⎜ ⎟
⎝ ⎠

 defined in a region R, the 

relevant (potential energy) quadratic form for a uniform material is  
 

2 22 2
1 1 2 ,

2 4 2
u u u d

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂ ∂ ∂⎛ ⎞ ⎛ ⎞⎜ ⎟+ + + + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠
∫

λ λ λv v v
x dy

x y y x x yR
                    

 
 
 
where 1λ  and 2λ  are the Lamé constants. The corresponding inner product is the 
energy inner product and Hilbert space thus obtained is the potential energy space for 
two-dimensional linear elasticity. 
 
There are many other examples of function spaces important for particular systems; e.g., 
many specialized Hilbert and Banach spaces arise in connection with functional 
differential equations of time delay type. Space does not permit us to attempt even a 
representative selection of these for description here. The necessity, and desirability, of 
choosing the right state space for a distributed parameter system and then demonstrating 
that the relevant time trajectories of the system remain within the state space is one of 
the most challenging, and sometimes frustrating, aspects of the field. 
 
- 
- 
- 
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