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Summary 

Different types of classical and generalised 2-D models and relationships between them 
are presented. Solutions to the models are given. The realisation problem for positive 2-
D linear model are formulated and solved.  
 
1. Introduction. 
 
The most popular models of 2-D linear systems are models introduced by Roesser 
(1975), Fornasini and Marchesini (1976-1978) and Kurek (1985). Next the models have 
been extended for n-D (n>2) models with variable coefficients, singular 2-D models 
(Kaczorek 1988), singular 2-D continuos-discrete models and positive 2-D models.  
 
The article is organised as follows. In Section 2 different types of classical and 
generalised 2-D and n-D models are presented. Relationships between the models and 
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some transformations of 2-D models are discussed in Section 3. Solutions to the 
standard and generalised 2-D models are given in Section 4. Section 5 deals with 
singular 2-D continuos-discrete linear models. Positive 2-D linear models are 
considered in Section 6. Section 7 describes the realisation problem for positive 2-D 
linear systems.  
 
 
 
 
2. Models of generalised multidimensional linear systems. 
 
Roughly speaking, N-dimensional discrete systems are dynamical systems described by 
difference equations in N independent variables for 2N ≥ .  
 
Definition 1.  A model 
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1 2 1 2 1 2, ,..., , ,..., , ,..., 1 2, ,..., {0,1,...}
N N Ni i i i i i i i i Ny Cx Du i i i Z+= + ∈ =  (1b) 

 

1 2, ... N
n

i i ix R∈  is the local semistate vector at the point 1 2( , ,..., )Ni i i , 
1 2, ... N

m
i i iu R∈  is the 

input, 
1 2, ... N

p
i i iy R∈  is the output and 

1 1 10 ,..., , ,...,, , ,...,
j j Nj jk i i i iA A A A
− +

, 

1 1 10 ,..., , ,...,, , ,...,
j j Nj jk i i i iB B B B
− +

, C, D  and  E  are real matrices of appropriate 

dimensions, is called the general N-dimensional model (GNDM). 
Using the notations 1 2: ( , ,..., ), , 1,..., ; : (1,1,...,1)N kI i i i i Z k N V+= ∈ = = , je  is the N-
dimensional vector which is zero except in the  jth  entry where it is one, we may write 
(1) in the compact form 
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1 1
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( ) ( ) ( )y I Cx I Du I= +   (1’b) 

 
where 

1 2 1 2 1 2, ... , ... , ...( ) , ( ) , ( )
N N Ni i i i i i i i ix I x u I u y I y= = = . 

 
The special feature of the generalised model is that the q n×  E  matrix may be singular. 
The model (1) is called singular if q n≠  or det 0E =  when q n= . 
Boundary conditions for (1a) are usually given by 
 

1 1 1,...,,..., ,0, 0 1,...,
j j Ni i i i jx x for j N
− +

= =  (2) 

 
where 0jx  are known vectors. 
In the particular case for 2N = , from (1) we obtain the generalised 2-D model (G2DM) 
 

1, 1 0 , 1 1, 2 , 1 0 , 1 1, 2 , 1i j i j i j i j i j i j i jEx A x A x A x B u B u B u+ + + + + += + + + + +  (3a) 

, , ,i j i j i jy Cx Du= +  (3b) 
 
From (3), for 1 2 0B B= = , we obtain the first generalised Fornasini-Marchesini model 
(FGF-MM): 
 

1, 1 0 , 1 1, 2 , 1 0 ,i j i j i j i j i jEx A x A x A x B u+ + + += + + +  (4a) 

, , ,i j i j i jy Cx Du= +  (4b) 
 
From (3), for 0 0A =  and 0 0B = , we obtain the second generalised Fornasini-
Marchesini model (SGF-MM): 
 

1, 1 1 1, 2 , 1 1 1, 2 , 1i j i j i j i j i jEx A x A x B u B u+ + + + + += + + +    (5a) 

, , ,i j i j i jy Cx Du= +         (5b) 
 
From (4), for 0 1 2A A A= − , we obtain the generalised Attasi model (GAM): 
 

1, 1 1 2 , 1 1, 2 , 1 0 ,i j i j i j i j i jEx A A x A x A x B u+ + + += − + + +    (6a) 

, , ,i j i j i jy Cx Du= +        (6b) 
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Model (3),(4),(5) are called singular if matrix E    is singular, i.e. q n≠  or det 0E =  
when q n= . 
Boundary conditions for (3a),(4a),(5a) and (6a)  are given by 
 

0ix   for  0,1,...i =   and 0 jx  for  0,1,...j =      (7) 
or 

,i jx   for all  i  and  j  such that 0i j+ =      (8) 
 
Definition 2. A model 
 
Ex Ax Bu′ = +         (9a) 
y Cx Du= +          (9b) 
 
where 
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1 2, ,...,
j

N

nj
i i ix R∈  is the jth local semistate vector for 1,...,j N= , 

1 2, ,..., N
m

i i iu u R= ∈  is the 

input, 
1 2, ,..., N

p
i i iy u R= ∈  is the output and , , ,ij j jA B C D  and  E are real matrices of 

appriopriate dimensions, is called the generalised N-dimensional Roesser model 
(GNDRM).  
Using the compact notation we may write the model (9) in the form 
 

( ) ( ) ( )Ex I Ax I Bu I′ = +        (9’a) 
( ) ( ) ( )y I Cx I Du I+ +        (9’b) 
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The special feature of the generalised model is that the q n×  1( ... )Nn n n= + +  E matrix 
may be singular. The model (9) is called singular if q n≠  or det 0E =  when q n= . 
Boundary conditions for (9a) are usually given by (2). 
 
In the particular case for 2N =  from (9) we obtain the generalised 2-D Roesser model 
(G2DRM) 
 

1, , 1011 12
,

21 22, 1 , 20

h h
i j i j

i jv v
i j i j

x x BA A
E u

A Ax x B

+

+
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    (10a) 

[ ], 10 20 ,

h
ij

i j i jv
ij

x
y C C Du

x

⎡ ⎤
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      (10b) 

 
where 1

,
nh

i jx R∈ , 2
,

nv
i jx R∈  are the horizontal and vertical local semistate vectors, 

respectively. 
 
Definition 3.  A model  
 

0 1 1
ˆˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ... ( )N NEx I Ax I B u I B u I e B u I e′ = + + + + + +    (11a) 

ˆ ˆ( ) ( ) ( )y I Cx I Du I= +         (11b) 
 
where ( ), ( ), ( )x I X I u I′  and ( )y I  are defined in the same way as for (9’) is called the 
general N-D Rosser model with extended inputs (GNDREI). For 0, 1,...,kB k N= =  
we obtain the model (9’). 
 
Definition 4.  A model 
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where 1nh

ijx R∈   and 2
,

nv
i jx R∈  are the horizontal and vertical semistate vectors, 

m
iju R∈  and p

ijy R∈  are the input and output vectors, 1 1
11 1, n nA F R ×∈ , 

2 2
22 2, n nA F R ×∈ , n nE R ×∈ , 1 2n n n= + , 1

1
n mB R ×∈ , 2

2
n mB R ×∈ , 

1 2
1 2, ,p n p n p mC R C R D R× × ×∈ ∈ ∈ , is called the 2-D Roesser model with extended 

states (2DRMES). 
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The models (1)-(11) are called standard if matrix  E  is nonsingular. If  E  is 
nonsingular, then premultiplying (1a),(3a),(4a),(5a),(6a),(9a),(10a) and (11a) by 1E−  we 
obtain corresponding standard models with E I= . 
 
If the entries of the matrices depend on the variables 1 2, ,..., Ni i i  the models are called 
the models with variable coefficients. 
 
- 
- 
- 
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