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Summary 
 
This article contains fundamental theorems concerning unconstrained and constrained 
controllability problems both for linear and nonlinear 2-D systems with constant 
coefficients. In the literature, there are many other controllability and observability 
results, derived for more general 2-D dynamical systems. For example, controllability 
and observability of the following multidimensional discrete systems have recently been 
considered: 
 

• linear 2-D systems with variable coefficients,  
• linear 2-D systems defined in infinite-dimensional linear spaces e.g., Hilbert 

spaces or Banach spaces, 
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• linear 2-D systems with delays , 
• linear M-D systems i.e. discrete systems with M independent variables, 
• nonlinear 2-D systems with variable coefficients. 

 
For different classes of the above multidimensional discrete systems, it is necessary to 
introduce different types of controllability and observability. For example, for infinite-
dimensional systems, it is necessary to introduce two fundamental notions of 
controllability and observability, namely, approximate (weak) controllability, exact 
(strong) controllability and approximate (weak) observability and exact (strong) 
observability.  
 
Controllability of dynamical systems is strongly connected with the so-called minimum 
energy control problem, which has been considered in many publications for various 
kinds of linear 2-D systems. Moreover, it should be pointed out that similarly to 
classical linear dynamical systems, there are relationships between controllability and 
spectrum assignability for 2-D systems. 
 
1. Introduction 
 
Controllability and observability are two fundamental concepts in modern mathematical 
control theory. Many dynamical systems are organized such that the control does not 
affect the complete state of the dynamical system, but only a part of it. On the other 
hand, very often in real industrial processes, it is possible to observe only a certain part 
of the complete state of the dynamical system. Therefore, it is very important to 
determine whether or not control and observation of the complete state of the dynamical 
system are possible. Roughly speaking, controllability generally means that it is 
possible to steer dynamical system from an arbitrary initial state to an arbitrary final 
state using the set of admissible controls. On the other hand, observability means that it 
is possible to recover uniquely the initial state of the dynamical system from a 
knowledge of the input and output. Controllability and observability play an essential 
role in the development of the modern mathematical control theory. Moreover, it should 
be pointed out that there exists a formal duality between the concepts of controllability 
and observability. 
 
In the literature, there are many different definitions of controllability and observability 
that depend on the type of dynamical system. A growing interest has been developed 
over the past few years in problems involving signals and systems that depend on more 
than one of the independent variables. The motivations for studying 2-D systems have 
been well justified in several papers and monographs. Most of the major results 
concerning the multidimensional signals and systems are developed for two-
dimensional cases. Discrete dynamical systems with two independent variables, so 
called 2-D systems, are important mainly in image processing, multivariable network 
realizability and in multidimensional digital filters. During last two decades 
controllability of 2-D systems has been considered in many papers and books. The main 
purpose of this article is to present a compact review over the existing controllability 
and observability results mainly for linear discrete 2-D systems. The majority of the 
results in this area concern linear 2-D systems with constant coefficients. It should be 
pointed out that for linear systems, controllability and observability conditions have 
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pure algebraic forms and are easily computable. These conditions require verification of 
the rank conditions for suitably defined constant controllability and observability 
matrices. 
 
The article is organized as follows. Section 2 contains systems descriptions and 
fundamental results concerning unconstrained controllability for the most popular linear 
2-D models with constant coefficients. In Section 3, unconstrained controllability of 
linear singular 2-D systems with constant coefficients is discussed. The next Section, 4, 
is devoted to a study of constrained controllability of linear regular 2-D systems. The 
special attention is paid for the so-called positive controllability. Section 5 presents 
results on positive controllability for linear positive 2-D systems. In Section 6 
controllability of the so-called continuous-discrete linear systems is investigated. Local 
controllability of nonlinear 2-D systems with constrained controls is considered in 
Section 7. Section 8 contains fundamental definition of observability and necessary and 
sufficient conditions for observability of linear discrete 2-D systems with constant 
coefficients. Finally, in Section 9, concluding remarks and comments concerning 
possible extensions are presented. Since the article should be limited to a reasonable 
size, it is impossible to give a full survey of the subject. In consequence, only selected 
fundamental results, without proofs, are presented. 
 
2. Unconstrained controllability 
 
2.1. Mathematical model 
 
In the theory of 2-D systems, several different models are considered. The most popular 
and the most frequently used are based on the Fornasini-Marchesini model, given by the 
following linear difference equation 
 
x(i+1,j+1) = A0x(i,j) + A1x(i+1,j) + A2x(i,j+1) + Bu(i,j) (1) 
 
where i,j∈Z+={0,1,2,3,...} is a set of nonnegative integers,  x(i,j)∈Rn is a local state 
vector, u(i,j)∈U⊂Rm is an input vector, U is a given set, A0, A1, A2, and B are real 
matrices of appropriate dimensions. Boundary conditions for the equation (2.1) are 
given by the following equalities 
 
x(i,0) = xi0 ∈ Rn   for  i ∈ Z+  x(0,j) = x0j ∈ Rn   for  j ∈ Z+                         (2) 
 
2.2. General response formula 
 
In order to present the general response formula for equation (1) in a convenient 
compact form, it is necessary to introduce (n×n)-dimensional so called state transition 
matrix Ai,j defined as follows: 
 
A0,0 = I,  (n×n) identity matrix, 
 
A-i,j = Ai,-j = A-i,-j = 0   for  i,j >0, 
 
Ai,j = A0Ai-1,j-1 + A1Ai,j-1 + A2Ai-1,j = Ai-1,j-1A0 + Ai,j-1A1 + Ai-1,jA2   for i,j>0 
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Therefore, general response formula for equation (1) with boundary conditions (2) and 
given admissible controls sequence has the following compact form 
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It is well known that for 2-D systems, it is possible to introduce several different notions 
of controllability. For example, we may consider global controllability of 2-D systems, 
or the so- called straight line controllability of 2-D systems.  
 
- 
- 
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