
UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XIV - Stability of 2D Systems - P. A. Cook 
 

©Encyclopedia of Life Support Systems (EOLSS) 

STABILITY OF 2D SYSTEMS 
 
P. A. Cook 
Control Systems Centre, Department of Electrical Engineering & Electronics, UMIST, 
Manchester. U.K. 
 
Keywords: Asymptotic Stability, Bounded-Input Bounded-Output Stability, 
Continuous Systems, Discrete Systems, Feedback, State-Space Representations, 
Transfer Functions. 
 
Contents 
 
1. Introduction 
2. Discrete Systems 
2.1. Input-Output Stability 
2.2. Asymptotic Stability 
2.2.1. Component-wise Stability 
2.3. Feedback System Stability 
3. Discrete-Continuous Systems 
4. Continuous Systems 
5. Applications 
5.1. Compartmental Models 
5.2. Iterative Processes 
Glossary 
Bibliography 
Biographical Sketch 
 
Summary 
 
This chapter deals with the formulation of stability theory for two-dimensional 
dynamical systems, by generalizing the concepts used in the classical one-dimensional 
case. Both the input-output description and different forms of state-space representation 
are considered, leading to the definition of bounded-input bounded-output stability and 
asymptotic stability, with a discussion of the relationship between them. Necessary and 
sufficient conditions for stability are given, using functions of two complex variables, 
and the Nyquist stability criterion for feedback systems is extended to the two-
dimensional case. Most of the analysis refers to systems where both independent 
variables, corresponding to the two dimensions, are discrete, but the cases of discrete-
continuous and doubly continuous systems are also addressed. Finally, some application 
areas are discussed, specifically in compartmental modeling and iterative learning 
control. 
 
1. Introduction 
 
By a two-dimensional (2D) dynamical system, we mean one which is described by a set 
of differential or difference equations in two independent variables. According to the 
particular application considered, both variables may be continuous, or both discrete, or 
one continuous and the other discrete. In any case, however, in order to introduce the 
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concept of stability, we have to assume a sequential ordering for at least one 
independent variable, so as to make a distinction between past and future, by analogy 
with time in a one-dimensional (1D) system. We can then say, loosely speaking, that a 
system is stable if the effects of past disturbances or initial conditions die away as the 
system evolves into the future, and this notion can be given a satisfactory mathematical 
expression, at least in the case of systems described by linear equations with constant 
coefficients. For nonlinear systems or those with time-dependent parameters, on the 
other hand, the situation is much more complicated and less well understood. Moreover, 
even for the linear time-invariant case, different formulations of the stability concept 
can be given, which are not necessarily equivalent. 
 
2. Discrete Systems 
 
Just as a 1D system, a 2D system can be described by either an input-output relation or a 
set of state-space equations. The input-output description of a causal linear shift-
invariant 2D system can be written 
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where u and y are the input and output respectively, and the coefficients hkg  specify the 
impulse response of the system. A state-space representation of such a system can be 
put in the form 
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where x is a state vector of sufficient length and the coefficient matrices are of 
compatible sizes. This representation, known as a Fornasini-Marchesini model, is 
naturally not unique, nor indeed is its structure, since the 2D environment admits 
considerably more variety of system description than is possible in the 1D case, but it is 
generally applicable and convenient. An alternative representation, with the structure 
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1 1 2 2 00( , ) ( , ) ( , ) ( , )y h k h k h k g u h k= + +C x C x      (5) 

 
is known as a Roesser model. These two forms of representation are in fact equivalent, 
in the sense that either can be transformed into the other. 
 
The transfer function of the system defined by Eq. (1) is 
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giving the relation 
 

1 2 1 2 1 2( , ) ( , ) ( , )Y z z G z z U z z=        (7) 
 
between the 2D z-transforms of the input and output, where 1 2( , )z z  correspond to 
backward shift operations, following the usual practice in 2D, though not 1D, discrete 
system theory. If the transfer function is expressible as a rational fraction 
 

1 2
1 2

1 2

( , )
( , )

( , )
z z

G z z
z z

ψ
=
φ

 ,       (8) 

 
where φ and ψ are polynomials, then a state-space representation can be constructed, 
either in the form of Eqs. (2) and (3), or alternatively Eqs. (4) and (5). Conversely, an 
expression of the form (8) can, for instance, be obtained from the Fornasini-Marchesini 
equations by setting  
 

1 2 1 1 2 2( , ) det( )z z z zφ = − −I A A       (9) 
 

1 2 1 1 2 2 1 1 2 2 00 1 2( , ) adj( )( ) ( , )z z z z z z g z zψ = − − + + φC I A A B B   (10) 
 
although it is not necessarily in its lowest terms, as the numerator and denominator 
polynomials may have common factors. Incidentally, in contrast to the 1D case, 2D 
polynomials can simultaneously vanish without having any factor in common, for 
example if 1 2 1 2( , ) 2z z z zφ = − −  and 1 2 1 2( , ) (1 )(1 )z z z zψ = − − , when 1 2( , )G z z  is said 
to have a non-essential singularity of the second kind. 
 
- 
- 
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