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Summary 
 
This article presents some useful tools for the analysis of nonlinear control systems. The 
article starts by reviewing some facts about the existence, uniqueness, and continuity of 
the solutions of nonlinear differential equations. Then, it presents sensitivity analysis, 
small-gain and passivity theorems for the stability of feedback connections, and the 
averaging and singular perturbation methods for the analysis of two-time-scale systems. 
 
1. Introduction 
 
When engineers analyze and design nonlinear control systems, they need a wide range 
of nonlinear analysis tools. In this article, we describe some tools which are not covered 
in other articles. We start by recalling some fundamental properties of ordinary 
differential equations like existence, uniqueness, and continuity of solutions. Then we 
derive sensitivity equations which describe the effect of small parameter variations on 
the performance of the system. Stability analysis plays a central role in control 
engineering. Lyapunov and input-output stability concepts are presented in other articles 
(see Stability theory, Popov and circle criterion, Lyapunov stability and Input-output 
stability). We do not repeat these concepts here but we consider stability of the feedback 
connection of Figure 1. If the feedback components 1H  and 2H  are stable in some 
sense, it is interesting to know under what conditions will the feedback connection be 
stable. Towards that end, we present the small-gain theorem and passivity theorems. 
Finally, we present the averaging and singular perturbation asymptotic methods, which 
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reveal multiple-time-scale structures inherent in many dynamical systems. In such 
structures, some variables move in time faster than other variables, leading to the 
classification of variables as “slow” and “fast”. 
 

 
 

Figure 1: Feedback connection. 
 
Throughout the article we deal with dynamical systems represented by the state model 
 

( ) ( ),f h= =x t,x,u y t,x,u  
 
where x,u,  and y  are vectors representing the state, input, and output, respectively, 
and x is the derivative of x  with respect to the time variable t . For the state equation 

without input ( ),f=x t, x  a point ∗x is an equilibrium point if ( ) 0f ∗ =t, x  for 

allt ; hence a solution starting at ∗x stays at ∗x  for all time. Specializing further to the 
case ( ),f=x x  we can see that equilibrium points are the real roots of ( )0 f= x . To 
avoid duplication, we assume familiarity with the terminology and results of Lyapunov 
theory (see Lyapunov stability). 
 
2. Fundamental Properties 
 
Existence, uniqueness, and continuous dependence of solutions on initial conditions and 
parameters are fundamental properties for the state equation ( )f=x t, x  to be a useful 
mathematical model of a physical system. For the model to predict the future state of the 
system from its current state at ,0t  the initial value problem 
 

( ) ( ),f= =x t,x x t x0 0   (1) 

 
must have a unique solution. Local existence and uniqueness of solutions on some 

interval ,⎡ ⎤⎣ ⎦t t0 0 + δ  are guaranteed if the function ( )f t,x is locally Lipschitz at 

( ), ;t x0 0  that is, if it satisfies the Lipschitz condition 
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( ) ( )f f L− ≤ −t,x t,y x y   (2) 
 

for all ( )t,x  and ( )t,y in some neighborhood of ( ),t x0 0 . 

 
When ( )f x  and x  are scalars, the Lipschitz condition can be written as 

( ) ( )f f L− − ≤/y x y x  which implies that the absolute value of the slope of 

( )f x  is less than .L  Therefore, any function ( )f x  that has infinite slope at some 
point is not locally Lipschitz at that point. For example, any discontinuous function is 
not locally Lipschitz at the point of discontinuity. As another example, the continuous 

function ( )f =
1
3x x  is not locally Lipschitz at 0.=x  It can be easily seen that the 

scalar equation =
1
3x x  with ( ) 0=0x  does not have a unique solution, as both 

( ) ( )
3

22= 3/x t t  and ( ) 0≡x t  are valid solutions. 
 
When ( )f t,x  is continuous in t  and has continuous first partial derivatives with 
respect to x  in a domain D , it is locally Lipschitz in D . If D  is the whole space and 
the partial derivatives if∂ ∂ jx/  are globally bounded, f  will be globally Lipschitz; 

that is, the Lipschitz condition (2) is satisfied for all x  and y  with same constant L . 
 

Local existence and uniqueness on an interval ,⎡ ⎤⎣ ⎦t t0 0 +δ  can be extended to global 

existence on the interval ( ],0t ∞   if  
 

• f  is globally Lipschitz, or 

• f  is locally Lipschitz and it can be argued that the solution of  ( )f=x t,x  
cannot leave a compact set. 

 
For example, in the scalar system = −x x 3  the function f  is not globally Lipschitz, 

but for any initial state ( ) a=0x  the solution cannot leave the compact set { }.a≤x  

Thus, the equation has a unique solution for all ≥ 0t .  
 
For the solution of the state equation (1) to be of any interest, it must depend 
continuously on the initial state 0x  and the right-hand side function ( )f t,x . The 

Lipschitz condition guarantees such continuity properties. Let ( )f t, x  be continuous in 

t  and Lipschitz in x  on ,D⎡ ⎤ ×⎣ ⎦t ,t0 1  for some domain D , with a Lipschitz constant 

L . Let ( )y t  and ( )z t  be solutions of  
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( ) ( ), ,f= =y t,y y t y0 0  and   ( ) ( ) ( ),f= =z t, z g t,z z t z0 0+  

 

such that ( ) ( ), Dy t z t ∈  for all ,⎡ ⎤⎣ ⎦t t t0 1∈ . Suppose ( ) ≤ μg t,x  for all 

[ ], , Dt t t x0 1∈ ∈  for some >0.μ  Then, 
 

( ) ( ) ( ) ( ){ }exp exp 1L L
L

− ≤ − − − −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦y t z t y z t t t t0 0 0 0+
μ

 

 

, .⎡ ⎤∀ ⎣ ⎦t t t0 1∈ This inequality shows that the solution of (1) depends continuously on 

x0  and f . The inequality, however, assumes that both ( )y t and ( )z t  are defined on 

the interval ,⎡ ⎤⎣ ⎦t t0 1 . In fact, if one of the two solutions is defined, then by continuity 

the other solution should be defined as well. This can be shown if the perturbation of f  

is parameterized by a vector of constant parametersλ . Let ( )f t,x,λ  be continuous in 

( )t,x,λ and locally Lipschitz in x  (uniformly in t  andλ ) on 

{ }, ,D c⎡ ⎤ × × ≤⎣ ⎦t t0 1 0λ−λ  for some domain D . Let ( )y t, 0λ  be a solution of 

( )f=x t,x, 0λ  with ( ) .D=0y t , yλ0 ∈0  Suppose ( )y t, 0λ  is defined and belongs 

to D  for all ,⎡ ⎤⎣ ⎦t t t0 1∈ . Then, given >0,ε  there is >0,δ  such that if 

−z y0 0 <δ   and − <0λ λ δ,  then there is a unique solution ( )z t,λ  of 

( )f=x t,x,λ  defined on ,⎡ ⎤⎣ ⎦t t0 1  with ( ), =z t z0 0λ   such that 

( ) ( )−z t, y t, <0λ λ ε  for all ,⎡ ⎤⎣ ⎦t t t0 1∈ . 

 
- 
- 
- 
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