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Summary 
 
In this article we define input–output stability for a system by considering the relative 
“size” of signals at the input and output. This leads to the notion of gain, which 
generalizes the gain of a linear amplifier. The small-gain theorem is the basic result, and 
states that the product of the gains in a feedback loop should be less than one for 
stability. After considering linear systems, we discuss the case of bilinear systems, and 
obtain an expression for the gain of such systems. The circle theorem for feedback 
systems containing a linear element and a nonlinear element in the feedback loop is 
covered in detail, and generalizations based on passivity and multipliers are introduced. 
Finally the robustness of stability under parameter changes and input disturbances is 
discussed. 
 
1. Introduction 
 
The notion of stability is one of the most important concepts in the whole of systems 
theory. An overall closed-loop system must be stable even if the plant has been 
deliberately designed to be unstable (as in the case of modern fighter aircraft, for 
example). This intuitive idea of stability, that systems should not produce signals of 
unbounded growth for input signals that are bounded in some sense, can be formalized 
in a number of ways; the most popular and effective are the Lyapunov notion of 
stability based on internal energy dissipation, and the input–output definition based 
essentially on the “gain” of the system. Much of the input–output theory can be traced 
back to the work of Zames, Sandberg, and Popov. The gain of a linear amplifier is, of 
course, just the ratio of the output and the input voltages, which is a positive number. 
We shall see that this simple notion of gain generalizes to many kinds of nonlinear 
systems, provided we have a concept of “size” on the input and output signals, and we 
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shall do this by introducing a “norm” on these signals. In general, we shall see that the 
gain is then not necessarily constant, but can be a nonlinear positive real-valued 
function. 
 
Once we have defined input–output stability for a general (open-loop) system, it will be 
clear that it is not equivalent to Lyapunov stability in general, although for controllable 
and observable linear systems the two concepts coincide. When we consider systems in 
the form of a feedback loop with a subsystem in the feedforward path and one in the 
feedback path, such as the one in Figure 1, then we will show that the most basic result 
is the celebrated “small-gain theorem,” which states that if the product of the gains of S1 
and S2 is less than one, then the overall system is input–output stable. In many cases, 
one of the subsystems S1,S2 is linear and we can obtain generalizations of the Nyquist 
stability criterion in the form of Popov’s theorem or the various circle criteria, which 
state that the frequency response of the linear part must lie in a certain circle whose 
radius and center are specified by the nonlinear part. Finally, most systems are not 
known completely: some parameters may be unknown, the model may be only 
approximate, and there may be unknown disturbances in the system. It is therefore 
necessary to know that the stability of some nominal system implies that of systems 
perturbed around the nominal one and also what “size” of perturbations can be allowed. 
This is the theory of robustness, and we shall mention the most basic results. 
 

 
 

Figure 1. A simple feedback system 
 

2. Signals and Norms 
 
A signal in a system is taken as some vector-valued function ( ) : nt f t→ →R R of 
time into Euclidean n-space (although it is sometimes useful to consider complex 
vector-valued functions). Such a signal may be an input or an output of a system. (Note, 
however, that for distributed parameter systems, described by partial differential or 
functional differential equations, the image space must be some infinite-dimensional 
vector space.) In order to define the stability of a system, we must have some notion of 
“size” of a signal in order to measure the relative size of the output and input signals to 
the system. This is usually done by means of a `norm’. First, on the image space nR  of 
the signals we place some n-dimensional norm, such as 
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or 
 

max | | .i ix x∞ =  
 
The first is the most common (the standard Euclidean norm) and we usually omit the 
subscript “2.” Now, given a signal f(t) we may define its norm in many ways. Again, 
here are some of the most common (note that the signal may be very general: all that is 
really required is the formal mathematical condition of “measurability” so that the 
integrals are well defined): 
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(where the norm ||f(t)|| of the function value is a suitable norm such as one of those 
above). Again, the first and last are the most commonly used; the first is essentially a 
measure of the total energy in the signal, while the last measures absolute size at each 
time. The first has the desirable property that (by Parseval’s theorem) it has the same 
value (modulo 2π) as that of the Fourier transform of the signal: 
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(i.e. power can be measured in the “state space” or the frequency domain). We must 
also consider the spaces of all signals for which these norms are finite, so we introduce 
the spaces 
 

(0, ) { : } ,1p pL f f p∞ = < ∞ ≤ ≤ ∞ . 

 
However, since we want to allow signals for which these norms are not necessarily 
bounded, we also introduce more general spaces of functions f, whose “truncation” fT, 
defined by 
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belongs to the appropriate space, i.e. 
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XII - Input–Output Stability - Banks S.P. 
 

©Encyclopedia of Life Support Systems (EOLSS) 

(0, ) { : ,e
p T pL f f∞ = < ∞ for all T > 0}. 

 
These are the extended Lp spaces. Note that 
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