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Summary 
 
A survey of some of the main approaches for studying controllability and observability 
of nonlinear systems is given. Emphasis is on differential geometric tools like the Lie-
bracket and Lie-derivative, which forms a natural starting point for extending standard 
results on linear controllability and observability to nonlinear systems.  
 
1. Introduction 
 
Two of the fundamental concepts appearing in the earlier studies on linear control 
systems are controllability and observability. In particular, it was through the work of 
R.E. Kalman that the notion of controllability of a linear system was shown to be of 
interest in itself, and not only as it was appearing in the context of optimal control. 
Linear controllability turns out to be of importance in many contexts, with perhaps as 
one of the most useful applications, feedback stabilization or rather pole placement 
through state feedback. On the other hand, controllability has a very simple and 
appealing formulation in that a linear control system is said to be controllable if for any 
given pair of initial and final states there exists an input function that ‘steers’ the system 
from initial to final state.  
 
Also, observability in linear systems was developed simultaneously in the early 1960s, 
again under the impulses of R.E. Kalman. Besides the duality with linear controllability, 
like duality between a vector space and its dual, the importance of observability was 
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recognized in estimation and state reconstruction problems. A linear system with a 
linear output map is said to be observable if for a given input function, the output map 
uniquely determines the (initial) state of the system.  
 
Today, a wealth of information on controllability and observability of systems is 
available, and these concepts are now basic in a canonical description of linear systems. 
Starting in the early 1970s research has been directed also towards controllability and 
observability of nonlinear systems. Motivated in part by the linear theory, the aim was 
to develop similar results as there are available in the linear (time-invariant) setting. It 
soon turned out that this program might become too ambitious, in that apart from a few 
particular generalizations such as linear time-varying systems and bilinear control 
systems, a completely parallel theory on nonlinear controllability and observability is 
not feasible. Therefore various weaker notions of nonlinear controllability and 
observability have been developed in the 1970 and 1980s, all with an emphasis on 
computational characterizations, and their implications on the system structure.  
 
The aim of this chapter is to give an insightful introduction to certain nonlinear 
controllability and observability notions. Just like for linear systems, both concepts have 
their application in the design of nonlinear controllers. We will not go into the details of 
these applications, but refer the reader to the chapters Input-output Stability, Design of 
Nonlinear Control Systems, Feedback Linearization and Output Regulation where some 
of these applications will become clear.  
 
The organization of the chapter is as follows. In the next section, some preliminaries 
will be given. Section 3 treats the controllability and accessibility (a weaker form of 
controllability) of nonlinear control systems. Section 4 finally, treats the observability of 
nonlinear control systems.  
 
2. Preliminaries 
 
The nonlinear control systems that will be considered here are systems of the form  
 

1
( ) ( )

( )

m

i i
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x f x u g x

y h x
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⎧
= +⎪
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where ( )1 2
T n

nx x x x= ∈  are local coordinates for the smooth state space 

manifold M, ( )1
T m

mu Uu u= ∈ ⊂  are the controls, ( )1
T p

py y y= ∈  are 

the outputs, 1 mf g g, , ,  are smooth vector fields on M, and 

( )1
T p

ph h h M= : →  is a smooth function. The vector field f  is called the drift 

vector field and the vector fields 1 mg g, ,  are called the control vector fields. The 
system (1) is called driftless if 0f ≡ .  
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. XII - Controllability And Observability Of Nonlinear Systems - 
Henri Huijberts and Henk Nijmeijer 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

The set of admissible controls U  will be a subset of the functions from [0 )+ = ,∞  to 
U. We will assume that the sets U and U  satisfy the following conditions.  
 
Assumption 1. 
  
(a) The input space U is such that the set of associated vector fields of the system (1), 

( )1
1

{ | }T
m

i i m
i

f u g Uu u
=

= + ∈∑F , contains the vector fields 1 mf g g, , , .  

(b) U  consists of the piecewise constant functions which are piecewise continuous 
from the right.  
 
If the sets U and U  satisfy the conditions in Assumption 1, it may be shown that for 
any initial condition 0(0)x x=  and any given admissible control function ( )u ⋅ ∈U , 
there exists a 0 ft< ≤ +∞  such that the solution of (1) is defined on [0 )ft, , and is 

unique on [0 )ft, . This solution will be denoted by 0( )x t x u, , , while the resulting output 

at time [0 )ft t∈ ,  will be denoted by 0( )y t x u, , .  
 
In studying controllability and observability of nonlinear control systems, one needs the 
concepts of Lie bracket of vector fields and Lie derivative of a function. Below, we will 
give a definition of these concepts in local coordinates (see Lie Bracket for a coordinate 
free definition).  
 
Definition 1.  (Lie bracket and Lie derivative) Consider an n-dimensional smooth 

manifold M with local coordinates ( )1
T

nx x x= . Let X Y,  be smooth vector fields 
on M, and let Mφ : →  be a smooth function.  
 
(a) The Lie bracket of the vector fields X and Y, which is denoted by [ ]X Y, , is 
a smooth vector field on M, which in local coordinates is given by  
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and ( )Y x
x

∂
∂

 is defined analogously.  

 
(b) The Lie derivative of φ  along X, which is denoted by XφL , is a smooth real 
valued function on M, which in local coordinates is given by  
 

1
( ) ( ) ( )

n

X i
ii

x X x x
x=

∂φ
φ :=

∂∑L   (3)  

 
3. Controllability and Accessibility 
 
In this section we will study controllability of nonlinear control systems, as well as a 
weaker form of controllability which is known as accessibility. Roughly speaking, a 
system is controllable if one can steer from any point 0x M∈  to any other point 

1x M∈  by choosing an appropriate control function u∈U . For nonlinear systems, 
however, controllability in this sense is a notion that is too difficult to check in general. 
Therefore, also more restricted (local) versions of controllability are defined for 
nonlinear systems. To introduce these notions, we first need to define what we mean by 
a reachable set for a nonlinear system.  
 
Definition 2.  (Reachable set) Consider the nonlinear control system (1), and let 

0x M∈  be given. Let V M⊂  be a neighborhood of 0x .  
 

a) The set 0( )VR x T,  is the set of all points that can be reached from 0x  at time 
0T > , following trajectories which remain in V for 0 t T≤ ≤ , i.e.,  

 

        
0

0 0

( ) { there exists a ( ) such that

( ) (0 ) and ( ) }

VR x T x M u

x t x u V t T x T x u x
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, , ∈ ≤ ≤ , , =

U|
 (4) 

 
b) The V-reachable set at time T, which is denoted by 0( )V

TR x , is defined by  
 

        0 0( ) ( )V V
T

T
R x R x T

τ≤
:= ,∪  (5) 

 
c) The reachable set from 0x , which is denoted by 0( )R x , is defined by  

 
          0 0

0
( ) ( )M

T
R x R x T

>
:= ,∪  (6) 

 
Definition 3.  (Controllability)  
 

a) The nonlinear control system (1) is called controllable if for every 0x M∈  one 
has that  
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      0( )R x M=  (7) 
 

b) Let 0x M∈  be given. Then the nonlinear control system (1) is called locally 
controllable from 0x  if for every neighborhood V of 0x  and every 0T >  one 
has that 0( )V

TR x  contains a neighborhood of 0x .   
    

3.1. Controllability and Linearization 
 
In studying nonlinear control systems, a first approach is very often to consider its so 
called linearization around an equilibrium point. For a nonlinear control system of the 
form (1), this approach proceeds as follows. An equilibrium point 0 0( )x u M U, ∈ ×  is 

defined to be a point at which the system is at rest, i.e., 0 0 0( ) ( ) 0f x g x u+ = . Now let 

an equilibrium point 0 0( )x u,  for (1) be given, and define 0x x xδ := − , 0u u uδ := − , 
0( )y y h xδ := − , and  

 

( )0 0 0 0 0 0
1

1
( ) ( ) ( ) ( ) ( )

m
i

i m
i

gf hA x u x B g x g x C x
x x x=

∂∂ ∂
:= + , := , :=

∂ ∂ ∂∑  (8) 

 
Taking a Taylor series of (1) around 0 0( )x u, , one then obtains h.o.t.Ax Buxδ δ δ= + +  
and h.o.t.y Cxδ δ= +  where “h.o.t.” stands for “higher order terms”. Neglecting the 

higher order terms, one obtains the linearization of (1) around 0 0( )x u, , which is given 
by  
 

X Ax Bu
y Cx
δ δ δ

δ δ

⎧ = +⎪
⎨

=⎪⎩
 (9) 

 
Since near the equilibrium the linearized system (9) is a first order approximation of the 
nonlinear control system (1), one might hope to be able to make statements about the 
controllability of (1) based on the controllability properties of the linearized system (9). 
This is partly possible, as becomes clear from the following result.  
 
Theorem 1.  Consider the nonlinear control system (1), and let 0 0( )x u,  be an 

equilibrium point. Assume that U contains a neighborhood of 0u . For 0ε > , define 
0: { ( ) | || ( ) || ( 0)}u u t u tε = ⋅ ∈ − < ε ≥U U . If the linearized system (9) is controllable then for 

every 0ε >  the system (1) is locally controllable from 0x , where the control functions 
( )u ⋅  are taken from the set εU .    

 
Remark 1.  Recall that the linearized system (9) is controllable if and only if the matrix  

( )1nB AB A B−  (10) 
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has full rank (see System Characteristics: Stability, Controllability, Observability).  
 
The usefulness of Theorem 1 is restricted. In the first place, it only gives information 
about controllability in the neighborhood of equilibria. Furthermore, it may be that a 
nonlinear system is controllable around an equilibrium point, while its linearization 
around the equilibrium is not controllable. This is illustrated by the following example.  
 
Example 1.  Consider the model of a car in Figure 1.  

 

 
 

Figure 1. Model of a car 
 
As state of the system we take 1 2( )x x x= , ,φ,θ , where 1 2( )x x,  are the Cartesian 
coordinates of the center of the front axle, φ  is the angle between the horizontal and the 
longitudinal axle of the car, and θ  is the angle between the longitudinal axis and the 
line perpendicular to the front axis. Further, as control 1u  we take the angular velocity 
of the front axis, and as control 2u  the forward velocity of the car. We then obtain the 
following model:  
 

1 3 4 2

2 3 4 2

3 4 2

4 1

cos( )
sin ( )

sin ( )

x x ux
x x ux

x ux
ux

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪⎩

= +
= +
=
=

 (11) 

 
The linearization of (11) around the origin is given by  

1 2

2

3

4 1

0
0

ux
x
x

ux

⎧ δ δ⎪
⎪
⎪ δ
⎨
⎪ δ
⎪
⎪ δ δ⎩

=
=
=
=

 (12) 
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From Remark 1 it follows that (12) is not controllable. However, from experience we 
know that the system (11) should be controllable. This leads to the conclusion that for 
controlling (11) we cannot use the linearization (12). In the following subsection we 
will study this example further, and show that it is indeed controllable.   
    
- 
- 
- 
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