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Summary  
 
One of the basic fundamental issues in control theory is the ability to design a feedback 
law to the purpose of robustly stabilizing a system, in the presence of structured 
uncertainties, such as parameter variations as well as un-structured uncertainties, such as 
unmodeled dynamics. In the case of finite-dimensional, time-invariant, linear models, a 
variety of techniques are available, which range from elementary methods, based on 
Nyquist criterion and root locus analysis, to more elaborate methods, based on the 
design of feedback laws so as to keep the norm of certain operators below a fixed level. 
In recent years, some of these methods have been successfully extended to certain 
classes of nonlinear system. This chapter describes some of these techniques, with 
special emphasis on recursive methods for the synthesis of feedback laws which assign 
a fixed Lyapunov function or a fixed input-to-state-gain.  
 
1. Introduction 
 
One of the basic fundamental issues in control theory is the ability to design a feedback 
law for the purpose of robustly stabilizing a system, in the presence of structured 
uncertainties, such as parameter variations. In the case of finite-dimensional, time-
invariant, linear models, a variety of techniques are available, which range from 
elementary methods based on the properties of the root locus (which lends itself to a 
very intuitive characterization of the “stability margin” inherent to certain design 
techniques, such as “small-gain” and/or “high-gain”) to more sophisticated methods 
such as, in the case of parameter uncertainties, those relying upon the analysis of the 
closed-loop characteristic polynomial (whose uncertain coefficients range over 
prescribed intervals) or the design of a feedback controller imposing a fixed (parameter 
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independent) Lyapunov function. In the recent years, similar methods have been 
gradually developed also for nonlinear systems. In this chapter, we have chosen to 
review in some detail a number of these methods. Of course, stabilization is just one 
aspect of feedback design, for linear as well for nonlinear systems. It must be stressed, 
though, that stability is the most important feature a closed-loop system is required to 
have. It is for this reason that understanding how a nonlinear system can be stabilized, 
and – above all – robustly stabilized, is perhaps the most important step needed to 
understand how a nonlinear system can be controlled. Unless otherwise specified, we 
deal in what follows with single-input single-output nonlinear systems modeled in state-
space form by equations of the type 
 

( ) ( )
( )

x f x g x u
y h x
= +
=

 

 
in which ( ), ( ), ( )f x g x h x are smooth functions of x .  
 
2. State-feedback Design for Global Stability 
 
We present in this section a method for global stabilization of systems described by 
equations having a lower-triangular structure, namely systems modeled by equations of 
the form  
 

1

1 1 1 1 1 2

2 2 1 2 2 1 2 3

1 1

( , )

( , ) ( , )

( , , ) ( , , )

( , ,..., ) ( , ,..., )r r r r r
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q z b z u

=

= +

= +

= +

ξ

ξ ξ ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ ξ ξ ξ

 (2) 

 
in which 1,nz∈R ∈Rξ , for 1,..., ,i r u= ∈R . It is assumed that (0,0) 0f = and 
that  
 

1( , ,..., ) 0i ib z ≠ξ ξ  
 
for all 1( , ,..., ) n i

iz ×ξ ξ ∈R and all 1,...,i r= . 
 
The design of a feedback law that globally stabilizes this class of systems is based on a 
modular technique, currently known as “backstepping”, which is based on a recursive 
use of the following pair of simple lemmas.  
 
Lemma 1 Consider a system described by equations of the form  
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( , )
( , ) ( , )

z f z
q z b z u

=

= +

ξ

ξ ξ ξ
  (3)  

 
in which ( , ) , (0,0) 0nz f× =ξ ∈R R and ( , ) 0b z ≠ξ . Suppose there exists a smooth 
real-valued function ( )V z , which is positive definite and proper, such that  
 

( ,0) 0V f z
z

∂
<

∂
 

 
for all nonzero z . Then, there exists a smooth state feedback law ( , )u u z− ξ and a 
smooth real-valued function ( , )W z ξ , which is positive definite and proper, such that 
 

( , )
( , ) ( , ) ( , ) 0

f zW W q z b z u z
z

⎛ ⎞⎛ ⎞∂ ∂
+ <⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

ξ
ξ ξ ξ

ξ
 

 
for all nonzero ( , )z ξ . 
 
In fact, observe that the function ( , )f z ξ can be put in the form  
 

( , ) ( ,0) ( , )f z f z p z= +ξ ξ ξ      (4) 
 
where ( , )p z ξ is a smooth function. Then, consider the positive definite and proper 
function  
 

21( , ) ( )
2

W z V z= +ξ ξ ,      (5) 

 
and observe that  
 

( , )
( , ) ( , ) ( , ) ( ,0) ( , ) ( ( , ) ( , ) )

f zW W V Vq z b z u z f z p z q z b z u
z z z

⎛ ⎞⎛ ⎞∂ ∂ ∂ ∂
+ = + + +⎜ ⎟⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠

ξ
ξ ξ ξ ξ ξ ξ ξ ξ

ξ
. 

 
Choosing  
 

1( , ) ( , ) ( , )
( , )

Vu u z q z p z
b z z

∂⎛ ⎞= = − −⎜ ⎟∂⎝ ⎠
ξ ξ ξ− ξ

ξ
  (6) 

 
yields the required result.  
 
In view of the classical (direct and converse) Lyapunov Theorems, the hypothesis of 
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this Lemma (namely the hypothesis of the existence of a smooth positive definite and 
proper function ( )V z such that ( ,0)V

z f z∂
∂ is negative for each nonzero z ) is equivalent 

to the hypothesis that the equilibrium 0z = of the subsystem  
 

( ,0)z f z=  
 
is globally asymptotically stable. On the other hand, by the direct Lyapunov Theorem, 
the conclusion of the Lemma implies that the equilibrium at ( , ) (0,0)z =ξ of the 
system 
 

( , )z f z= ξ  
 

( , ) ( , ) ( , )q z b z u z= +ξ ξ ξ ξ  
 
is globally asymptotically stable. Thus, the result of the Lemma simply says that, if 

( ,0)z f z= has a globally asymptotically stable equilibrium at 0z = , then the 
equilibrium ( , ) (0,0)z =ξ of system (3) can be globally asymptotically stabilized by 
means of a smooth feedback law ( , )u u z= ξ .  
 
The next Lemma (which contains Lemma 1 as a particular case) extends this result, by 
showing that, to the purpose of stabilizing the equilibrium ( , ) (0,0)z =ξ of system (3), 
it suffices to assume that the equilibrium 0z =  of ( , )z f z= ξ  is stabilizable by means 

of a smooth control law ( )v z∗=ξ . 
 
Lemma 2 Consider a system described by equations of the form (3), in which 
( , ) , (0,0) 0nz f× =ξ ∈R and ( , ) 0b z ≠ξ . Suppose there exists a smooth real-
valued function  
 

( )v z=ξ , 
 
with (0) 0v = , and a smooth real-valued function ( )V z , which is positive definite 
and proper, such that  
 

( , ( )) 0V f z v z
z

∂
<

∂
 

 
for all nonzero z . Then, there exists a smooth state feedback law ( , )u u z= ξ and a 
smooth real-valued function ( , )W z ξ , which is positive definite and proper, such that  
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( , )
( , ) ( , ) ( , ) 0

f zW W q z b z u z
z

⎛ ⎞⎛ ⎞∂ ∂
+ <⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠⎝ ⎠

ξ
ξ ξ ξ

ξ
 

 
for all nonzero ( , )z ξ . 
 
In fact, it suffices to consider the globally defined change of variables 
 

( )y v z= −ξ , 
 
which transforms (3) into a system of the form  
 

( , ( ) )

( , ( ) ) ( , ) ( , ) ,

z f z v z y

vy f z v z y q z b z u
z

= +

∂
= − + + +

∂
ξ ξ

   (7) 

 
and to observe that the feedback law 
 

1 ( , ( )
( , )

vu f z v z y u
b z z

⎛ ⎞∂ ′= + +⎜ ⎟
∂⎝ ⎠ξ

 

 
changes the latter into a system satisfying the hypotheses of Lemma 1. 
 
Using repeatedly the property indicated in Lemma 2 it is straightforward to derive the 
following stabilization result about a system in the form (2) 
 
Theorem 1 Consider a system of the form (2), in which 

1( , ,..., ) (0,0) 0n r
rz f× =ξ ξ ∈R  

 
 and  1( , ,..., ) 0i ib z ≠ξ ξ  
 
for all 1( , ,..., ) n i

iz ×ξ ξ ∈R and all 1,...,i r= . Suppose there exists a smooth real-
valued function  
 

1 ( )v z=ξ , 
 
with (0) 0v = , and a smooth real-valued function ( )V z , which is positive definite 
and proper, such that  
 

0 ( , ( )) 0V f z v z
z

∂
<

∂
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for all nonzero z . Then, there exists a smooth state feedback law 
 

1( , ,..., )ru u z= ξ ξ  
 
which globally asymptotically stabilizes the equilibrium 
 

1( , ,..., ) (0,0,...,0)rz =ξ ξ  
 
of the corresponding closed loop system.  
 
Of course, a special case in which the result of Theorem 1 holds is when ( ) 0v z∗ = , 
i.e., when ( ,0)z f z= has a globally asymptotically stable equilibrium at 0z = . This 
important case occurs when a system form (2), with output 
 

1y = ξ  
 
has a zero dynamics with a globally asymptotically stable equilibrium at 0z = . For 
convenience this special case in summarized in the Corollary of Theorem 1.  
 
Corollary 1 Consider a system of the form (2), with output 1y = ξ . Suppose its zero 
dynamics have a globally asymptotically stable equilibrium at 0z = . Then, there exists 
a smooth state feedback law 
 

1( , ,..., )ru u z= ξ ξ , 
 
which globally asymptotically stabilizes the equilibrium  
 

1( , ,..., ) (0,0,...,0)rz =ξ ξ  
 
of the corresponding closed loop system.  
 
- 
- 
- 
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