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Summary 
 
Motion planning, i.e., steering a system from one state to another, is a basic question in 
automatic control. For a certain class of systems described by ordinary differential 
equations and called flat systems motion planning admits simple and explicit solutions. 
This stems from an explicit description of the trajectories by an arbitrary time 
function y , the flat output, and a finite number of its time derivatives. Such explicit 
descriptions are related to old problems on Monge equations and equivalence 
investigated by Hilbert and Cartan. A system equivalence relation, using the framework 
of differential geometry of jets and prolongations of infinite order, is sketched. In this 
setting, two systems are said to be equivalent if any variable of one system may be 
expressed as a function of the variables of the other system and of a finite number of 
their time derivatives. Equivalence is presented in an elementary way and illustrated on 
the VTOL example: it corresponds to endogenous feedback transformations, i.e., a 
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special type of dynamic feedback. Differentially flat systems are then defined as systems 
equivalent to linear controllable ones. Consequently flat systems are linearizable by 
endogenous feedback. The endogenous linearizing feedback is explicitly computed in 
the case of the VTOL aircraft to track given reference trajectories with stability. 
Deciding whether a given system is flat or not, is an open problem. We give some 
partial results such as the ruled manifold criterion, a simple necessary condition that can 
be very useful to prove that a system is not flat.  
 
1. Introduction 
 
In this chapter we concentrate on a specific class of systems, called “(differentially) flat 
systems”, for which the structure of the trajectories of the (nonlinear) dynamics can be 
completely characterized. Flat systems are a generalization of linear systems (in the 
sense that all linear, controllable systems are flat), but the techniques used for 
controlling flat systems are quite different from many of the existing techniques for 
linear systems. As we shall see, flatness is particularly well tuned for allowing one to 
solve the inverse dynamics problems and one builds off of that fundamental solution in 
using the structure of flatness to solve more general control problems. 
 
Flatness was first defined by Fliess et al. using the formalism of differential algebra. In 
differential algebra, a system is viewed as a differential field generated by a set of 
variables (states and inputs). The system is said to be flat if one can find a set of 
variables, called the flat outputs, such that the system is (non-differentially) algebraic 
over the differential field generated by the set of flat outputs. Roughly speaking, a 
system is flat if we can find a set of outputs (equal in number to the number of inputs) 
such that all states and inputs can be determined from these outputs without integration. 
More precisely, if the system has states nx∈ , and inputs mu∈  then the system is 
flat if we can find outputs my∈  of the form 
 

( )( , , ,..., )ry h x u u u=  
 
such that  
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Flatness has been defined in a more geometric context, where tools for nonlinear control 
are more commonly available. One approach is to use exterior differential systems and 
regard a nonlinear control system as a Pfaffian system in an appropriate space. In this 
context, flatness can be described in terms of the notion of absolute equivalence defined 
by E. Cartan.  
 
In this chapter we adopt a somewhat different geometric point of view, relying on a Lie-
Bäcklund framework as the underlying mathematical structure. This point of view was 
originally described by Fliess et al. and is related to the work of Pomet et al. on 
“infinitesimal Brunovsky forms” (in the context of feedback linearization). It offers a 
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compact framework in which to describe basic results and is also closely related to the 
basic techniques that are used to compute the functions that are required to characterize 
the solutions of flat systems (the so-called flat outputs).  
 
Applications of flatness to problems of engineering interest have grown steadily in 
recent years. It is important to point out that many classes of systems commonly used in 
nonlinear control theory are flat. As already noted, all controllable linear systems can be 
shown to be flat. Indeed, any system that can be transformed into a linear system by 
changes of coordinates, static feedback transformations (change of coordinates plus 
nonlinear change of inputs), or dynamic feedback transformations is also flat. Nonlinear 
control systems in “pure feedback form”, which have gained popularity due to the 
applicability of backstepping to such systems, are also flat. Thus, many of the systems 
for which strong nonlinear control techniques are available are in fact flat systems, 
leading one to question how the structure of flatness plays a role in control of such 
systems.  
 
It is true that any flat system can be feedback linearized using dynamic feedback (up to 
some regularity conditions that are generically satisfied). However, flatness is a property 
of a system and does not imply that one intends to then transform the system, via a 
dynamic feedback and appropriate changes of coordinates, to a single linear system. 
Indeed, the power of flatness is precisely that it does not convert nonlinear systems into 
linear ones. When a system is flat it is an indication that the nonlinear structure of the 
system is well characterized and one can exploit that structure in designing control 
algorithms for motion planning, trajectory generation, and stabilization. Dynamic 
feedback linearization is one such technique, although it is often a poor choice if the 
dynamics of the system are substantially different in different operating regimes.  
 
Another advantage of studying flatness over dynamic feedback linearization is that 
flatness is a geometric property of a system, independent of coordinate choice. 
Typically when one speaks of linear systems in a state space context, this does not make 
sense geometrically since the system is linear only in certain choices of coordinate 
representations. In particular, it is difficult to discuss the notion of a linear state space 
system on a manifold since the very definition of linearity requires an underlying linear 
space. In this way, flatness can be considered the proper geometric notion of linearity, 
even though the system may be quite nonlinear in almost any natural representation.  
 
This chapter provides a self-contained description of flat systems. It introduces the 
fundamental concepts of equivalence and flatness in a simple geometric framework. 
This is essentially an open-loop point of view. 
 
2. Equivalence and Flatness 
 
2.1. Control Systems as Infinite Dimensional Vector Fields 
 
A system of differential equations 
 

( ), nx f x x X= ∈ ⊂       (1) 
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is by definition a pair ( , )X f , where X  is an open set of n  and f  is a smooth vector 
field on X . A solution, or trajectory, of (1) is a mapping ( )t x t  such that  
 

( ) ( ( )) 0x t f x t t= ∀ ≥ . 
 
Notice that if ( )x h x  is a smooth function on X  and ( )t x t  is a trajectory of (1), 
then  
 

( ( )) ( ( )) ( ) ( ( )) ( ( )) 0d h hh x t x t x t x t f x t t
dt x x

∂ ∂
= ⋅ = ⋅ ∀ ≥
∂ ∂

. 

 
For that reason the total derivative, i.e., the mapping  
 

( ) ( )hx x f x
x
∂

⋅
∂

 

 
is somewhat abusively called the “time-derivative” of h  and denoted by h . 
 
We would like to have a similar description, i.e., a “space” and a vector field on this 
space, for a control system  
 

( , )x f x u= ,        (2) 
 
where f  is smooth on an open subset n mX U× ⊂ × . Here f  is no longer a vector 
field on X , but rather an infinite collection of vector fields on X  parameterized byu : 
for allu U∈ , the mapping  
 

( ) ( , )ux f x f x u=  
 
is a vector field on X . Such a description is not well-adapted when considering dynamic 
feedback.  
 
It is nevertheless possible to associate to (2) a vector field with the “same” solutions 
using the following remarks: given a smooth solution of (2), i.e., a mapping 

( ( ), ( ))t x t u t  with values in X U×  such that  
 

( ) ( ( ), ( )) 0x t f x t u t t= ∀ ≥ , 
 
we can consider the infinite mapping  
 

( ) ( ( ), ( ), ( ),...)t t x t u t u tξ =  
 
taking values in mX U ∞× × , where ...m m

m
∞ = × ×  denotes the product of an 

infinite (countable) number of copies of m . A typical point of m
∞  is thus of the form 
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1 2( , ,...)u u  with i mu ∈ . This mapping satisfies 
 

( ) ( ( ( ), ( )), ( ), ( ),...) 0,t f x t u t u t u t tξ = ∀ ≥  
 
hence it can be thought of as a trajectory of the infinite vector field  
 

1 1 1 2( , , ,...) ( , , ,...) ( ( , ), , ,...)x u u F x u u f x u u u=  
 
on mX U ∞× × . Conversely, any mapping  
 

1( ) ( ( ), ( ), ( ),...)t t x t u t u tξ =  
 
that is a trajectory of this infinite vector field necessarily takes the form 
( ( ), ( ), ( ),...)x t u t u t  with ( ) ( ( ), ( ))x t f x t u t= , hence corresponds to a solution of (2). Thus 
F  is truly a vector field and no longer a parameterized family of vector fields.  
 
Using this construction, the control system (2) can be seen as the data of the “space” 

mX U ∞× × together with the “smooth” vector field F  on this space.  
 
Notice that, as in the uncontrolled case, we can define the “time-derivative” of a smooth 
function 1 1( , , ,...) ( , , ,..., )kx u u h x u u u  depending on a finite number of variables by  
 

1 1( , , ,..., ) :kh x u u u Dh F+ = ⋅  
 

                              1 2
1( , )h h hf x u u u

x u u
∂ ∂ ∂

= ⋅ + ⋅ + ⋅ +
∂ ∂ ∂

. 

 
The above sum is finite because h  depends on finitely many variables. 
 
See the book of Zharinov for a rigorous statement of the underlying topology and 
differentiable structure of m

∞  to be able to speak of smooth objects.  
 
We are now in position to give a formal definition of a system: 
 
Definition 1: A system is a pair ( )FM,  where M  is a smooth manifold, possibly of 
infinite dimension, and F  is a smooth vector field onM . 
 
Locally, a control system looks like an open subset of α  (α not necessarily finite) 
with coordinates 1( ,..., )αξ ξ  together with the vector field 
 

1( ) ( ( ),..., ( ))F F Fαξ ξ ξ ξ=  
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where all the components iF  depend only on a finite number of coordinates. A 
trajectory of the system is a mapping ( )t tξ  such that ( ) ( ( ))t F tξ ξ= . 
 
We saw in the beginning of this section how a “traditional” control system fits into our 
definition. There is nevertheless an important difference: we lose the notion of state 
dimension. Indeed  
 

( , ), ( , ) n mx f x u x u X U= ∈ × ⊂ ×     (3) 
 
and  
 

( , ),x f x u u v= =        (4) 
 
now have the same description ( , )mX U F∞× × , with  
 

1 1 2( , , ,...) ( ( , ), , ,...),F x u u f x u u u=  
 
in our formalism: ( ( ), ( ))t x t u t is a trajectory of (3) if and only if ( ( ), ( ), ( ))t x t u t u t  
is a trajectory of (4). This situation is not surprising since the state dimension is of 
course not preserved by dynamic feedback. On the other hand we will see there is still a 
notion of input dimension.  
 
Example 1: (The trivial system). The trivial system ( , )m mF∞ , with coordinates 

1 2( , , ,...)y y y and vector field 
 

1 2 1 2 3( , , ,...) ( , , ,...)mF y y y y y y=  
 
describes any “traditional” system made of m  chains of integrators of arbitrary 
lengths, and in particular the direct transfer y u= . 
 
In practice we often identify the “system” 1 2( , ) : ( ( , ), , ,...)F x u f x u u u= with the 
“dynamics” ( , )x f x u= which defines it. Our main motivation for introducing a new 
formalism is that it will turn out to be a natural framework for the notions of 
equivalence and flatness we want to define.  
 
Remark 1: It is easy to see that the manifold M  is finite-dimensional only when there 
is no input, i.e., to describe a determined system of differential equations one needs as 
many equations as variable.  
 
In the presence of inputs, the system becomes underdetermined, there are more 
variables than equations, which accounts for the infinite dimension.  
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