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Summary 
 
In this chapter the extended Kalman filter is introduced and examined as an estimation 
method widely used in many areas of control, signal processing and optimization. The 
extended Kalman filter can be considered as a general state estimator for nonlinear 
stochastically excited systems in the continuous-time case as well as in the discrete-time 
case. It originated from the Kalman-Bucy filter developed primarily for linear system 
applications and is an extension of the concept to the nonlinear estimation problem. 
 
It will be pointed out that under certain assumptions: namely that the initial estimation 
error and the disturbing noise terms are small enough, the estimation error as a function 
of time is bounded in a specific sense. The presented results are illustrated by numerical 
simulations. 
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1. Introduction 
 
Many analytical procedures for control design are based on state feedback and it is 
assumed that the full state vector is available for measurement. However, in a lot of 
applications of control the state variables of a system that have to be controlled are not 
accessible for direct measurement or the number of measuring devices is limited, in 
order to apply state feedback to stabilize, to optimize or to decouple the system. In other 
cases the measured state values are often corrupted by noise. In such situations a 
reasonable substitute for the state vector has to be found. A device that constructs an 
approximation of the state vector based on measured output signals is called a state 
estimator or a state observer. The design of an observer is possible for linear systems, in 
fact, for continuous-time systems as well as for discrete-time systems. 
 
In the nonlinear case the estimation of the state vector corrupted by noise is commonly 
carried out by a device which is a compromise between accuracy and practical 
computational complexity. Many possibilities have been proposed to extend observers 
originally developed for linear systems to nonlinear systems. The proposal most used in 
practical applications is the extended Kalman filter, since it can be easily implemented 
and provides very good estimates. Although the original Kalman-Bucy filter was 
developed for linear systems only, it can be extended to nonlinear systems in a 
relatively simple manner. It is common to linearize the nonlinear system at the actual 
estimate in order to design a Kalman-Bucy filter for this linearization. This approach 
leads to the so-called extended Kalman filter which will be treated in the following. 
State estimation for nonlinear deterministic systems without disturbing noise is closely 
related the zero noise case. 
 
2. The Continuous-time Extended Kalman Filter 
 
2.1. State Estimation of Stochastically Excited Nonlinear Systems 
 
2.1.1. Preparations 
 
To treat randomly excited nonlinear continuous-time systems, the mathematical theory 
of stochastic differential equations is necessary. In the mathematical literature, the so-
called Ito calculus is used. The special features of the stochastic Ito differential 
equations concern, among other things, the fact that the integrals are not Riemannian 
integrals and the chain rule is substituted by the so-called Ito formula. In the following, 
however, we restrict ourselves to those cases where the aforementioned particularities 
are of no importance. 
 
The system to be considered is described by the equations 
 

( ) ( ) ( )( ) ( ) ( ), , ,
dz t

f z t x t t G t u t
dt

= +   (1a) 

 
( ) ( ) ( )( ) ( ), ,y t g z t x t t v t= +   (1b) 
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where z  denotes the vector of the q  state variables, x  is the input m -vector and y  the 
output r - vector; t  denotes continuous time. The terms u  and v  denote noise 
disturbances. The nonlinear vector functions f  and g  are assumed to be given and to 
be continuously differentiable such that the differential equation (1a) has a unique 
solution in the stochastic sense. The quantity ( )G t  means a specified time-variant 

q k×  matrix. The initial state ( ) 00z z=  is an unknown deterministic vector. 

Furthermore, the k -vector ( )u t  and r -vector ( )v t  are uncorrelated (statistically 
independent), zero mean white noise disturbance processes, i.e. we have 
 

( ) 0,E u t =⎡ ⎤⎣ ⎦   (2a) 
 

( ) 0,E v t =⎡ ⎤⎣ ⎦   (2b) 
 

( ) ( ) ( ) ( )T ,E u t u M t tτ δ τ⎡ ⎤ = −⎣ ⎦   (3a) 
 

( ) ( ) ( ) ( )T ,E v t v N t tτ δ τ⎡ ⎤ = −⎣ ⎦   (3b) 
 

( ) ( )T 0E u t v τ⎡ ⎤ =⎣ ⎦   (3c) 
 
where ( )M t  and ( )N t  are specified time-variant positive definite matrices, ( )tδ  
denotes the unit impulse function at t = 0. We choose the state observer (estimator) in 
the form 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )ˆ
ˆ ˆ, , , ,

dz t
f z t x t t K t y t g z t x t t

dt
⎡ ⎤= + −⎣ ⎦   (4) 

 
where ( )ẑ t  means the vector of the state estimate and ( )K t  is the amplification (gain) 
matrix. Now, we develop the nonlinear functions in the following form: 
 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )ˆ ˆ ˆ, , , , , , ,ff z t x t t f z t x t t A t z t z t r z t z t x t t− = − +  (5a) 
 

( ) ( )( ) ( ) ( )( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )ˆ ˆ ˆ, , , , , , ,gg z t x t t g z t x t t C t z t z t r z t z t x t t− = − +  (5b) 
 
with 
 

( )
( ) ( )ˆ , ,

,
z t x t t

fA t
z
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

  (6a) 
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( )
( ) ( )ˆ , ,z t x t t

gC t
z

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
  (6b) 

 
where ( ) ( ) ( )( )ˆ, , ,fr z t z t x t t  and ( ) ( ) ( )( )ˆ, , ,gr z t z t x t t  represent the summaries of 
the second and higher order terms. The estimation error is defined as 
 
( ) ( ) ( )ˆw t z t z t= − .  (7) 

 
Subtracting Eq. (4) from Eq. (1a) and considering Eqs. (1b), (5a,b) and (6a,b), (7) one 
obtains the following differential equation for the estimation error 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ,N R

dw t
A t K t C t w t r t r t

dt
= − + +⎡ ⎤⎣ ⎦

  (8) 
 
where 
 

( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )ˆ ˆ, , , , , ,N f gr t r z t z t x t t K t r z t z t x t t= −   (9a) 
 
includes the nonlinear terms and 
 
( ) ( ) ( ) ( ) ( )Rr t G t u t K t v t= −   (9b) 

 
combines the noise terms. 
 
2.1.2. Design equations 
 
The design equations of the extended Kalman filter follow simply from those of the 
Kalman-Bucy filter by substitution of the system matrices through the corresponding 
Jacobian matrices. This is in accordance with the linearization procedure of the 
nonlinear system about the present estimate ( )ẑ t . The application of the extended 
Kalman filter requires the solution of the differential equation (4) for the estimate 
 

( ) ( ) ( )( ) ( ) ( ) ( ) ( )( )ˆ
ˆ ˆ, , , ,

dz t
f z t x t t K t y t g z t x t t

dt
⎡ ⎤= + −⎣ ⎦   (10) 

 
(assuming that the functions x and y are always available) simultaneously with the 
Riccati differential equation 
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )T T 1dP t
A t P t P t A t Q t P t C t R t C t P t

dt
−= + + −

  (11) 
 
where we have the definitions 
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( )
( ) ( )ˆ , ,

,
z t x t t

fA t
z
∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠

  (12a) 

 

( )
( ) ( )ˆ , ,z t x t t

gC t
z

∂⎛ ⎞= ⎜ ⎟∂⎝ ⎠
  (12b) 

 
and the amplification matrix is given as 
 
( ) ( ) ( ) ( )T 1K t P t C t R t−= .   (13) 

 
Furthermore, ( )Q t , ( )R t  and the initial value ( )0P t  for the solution of the Riccati 
differential equation (11) have to be chosen as positive definite matrices. 
 
The following remarks can be made: 
 

1. The differential equations (10) and (11) are generally stochastic differential 
equations which can be solved numerically, for instance, with the aid of an Euler 
discretization and a probability generator for the noise processes. 

 
2. Frequently ( )Q t  and ( )R t  are chosen as the covariance matrices of the noise 

processes ( )u t  and ( )v t , respectively, i.e. 
 
           ( ) ( ) ( ) ( )TQ t G t M t G t= ,  (14a) 
 
          ( ) ( )R t N t= ,  (14b) 
 
where ( )M t  and ( )N t  are given by Eqs. (3a) and (3b). In certain cases, for example 

in estimating nonlinear systems without noise terms (i.e. ( )M t = 0  and ( )N t = 0 ), 
however, also in state estimation of stochastically excited nonlinear systems, a different 
choice of the matrices ( )Q t  and ( )R t  is not only possible but also significant. The 

matrices Q (t) and ( )R t  are, therefore, design parameters. 
 
2.1.3. Dynamics of the estimation error 
 
The Kalman-Bucy filter for linear systems is designed so that the error covariance 
matrix is minimized in a certain sense. For nonlinear systems the error covariance 

( ) ( )TE w t w t⎡ ⎤⎣ ⎦  is generally not minimized; but it remains bounded provided that 
certain requirements are satisfied. In the following theorem this statement is made 
precise. 
 
Theorem 1: Consider a nonlinear randomly excited continuous-time system described 
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by Eqs. (1a) - (3c) and an extended Kalman filter as defined by Eqs.(10)- (13). Assume 
that the following conditions are satisfied: 
 
1. There exist real positive numbers max min max min min, , , ,c p p q r  such that the following 

bounds are satisfied for every 0t t≥ : 
 
           ( ) max ,C t c≤   (15) 
 
            ( )min max ,p I P t p I≤ ≤   (16) 
 
             ( )min ,q I Q t≤   (17a) 
 
             ( )min ,r I R t≤   (17b) 
 
        where I  denotes the unit matrix. 
 
2. There exist real positive numbers , ,fg f gk kε  such that the nonlinear functions fr and 

gr   introduced in Eqs.(5a,b) are bounded by 
 
            ( ) 2ˆ ˆ, , , ,f fr z z x t k z z≤ −   (18a) 
 
            ( ) 2ˆ ˆ, , ,g gr z z x t k z z≤ −   (18b) 
 
             for ˆ fgz z ε− ≤  and every mx R∈  and ˆ, , qt z z R∈ . 
 
Then there exist for every 0wε >  two constants , 0w Rδ δ >  such that the estimation 
error defined by Eq. (7) is bounded for all 0t t≥  according to 
 

( ) 2 2
wE w t ε⎡ ⎤ ≤

⎣ ⎦    (19) 
  
provided that the initial error and the covariance matrices of the noise terms given by 
Eqs. (3a,b) are sufficiently small such that the inequalities 
 

( )0 ,ww t δ≤   (20a) 
 
( ) ( ) ( )T 2 ,RG t M t G t Iδ≤   (20b) 

 
( ) 2

RN t Iδ≤   (20c) 
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are satisfied. 
 
Remarks 
 

1. The inequalities (17a,b) can be satisfied by a suitable choice of the matrices 
( )Q t  and ( )R t , for example, time-invariant positive definite matrices can be 

chosen. On the other hand the conditions (15) and (16) must be numerically 
checked. 

 
2. With the aid of standard evaluations one can show that the inequalities (18a,b) 

are satisfied if the functions f and g  are twice continuously differentiable and 
the norms of the Hessian matrices belonging to f  and g  are bounded. 
Therefore, in many practical applications one can assume that the inequalities 
(18a,b)  are satisfied. 

 
3. It is to be noticed in contrast  to the linear case that the solution of the Riccati 

differential equation is generally not identical to the covariance matrix of the 
estimation error, i.e. we have in general 

 
          ( ) ( ) ( )TE w t w t P t⎡ ⎤ ≡/⎣ ⎦   (21) 
 
4. If the system in question is linear and one takes 
 

           ( ) ( ) ( ) ( )T ,Q t G t M t G t=   (22a) 
 
           ( ) ( ) ,R t N t=   (22b) 
 
 then 
 

           ( ) ( ) ( )TP t E w t w t⎡ ⎤≡ ⎣ ⎦ ,  (23) 
 

and the boundedness of the covariance of the estimation error follows directly 
from Eq.(16). 
 

5. In other words, Theorem 1 states the following: Under suitable assumptions the 
estimation error remains bounded and the bound can be chosen arbitrarily small 
in so far as the initial estimation error and the noise disturbance terms are 
sufficiently small. However, if the initial estimation error or the noise becomes 
too strong, the estimation error may eventually diverge. That behavior will now 
be demonstrated by two examples. 
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