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Summary 
 
The last quarter of the twentieth century has seen a rapid progress towards the 
development of a nonlinear control theory. This chapter introduces the main tools of 
analysis and design of nonlinear control systems, which are detailed in the subsequent 
chapters.  
 
1. Introduction 
 
There are many control tasks that require the use of feedback. Depending on the design 
goals, there are several formulations of the control problem. The tasks of stabilization, 
tracking, and disturbance rejection or attenuation (and various combinations of them) 
lead to a number of control problems. In each one, we may have a state feedback 
version where all state variables can be measured, or an output feedback version where 
all state variables can be measured, or an output feedback version where only an output 
vector, whose dimension is often less than the dimension of the state, can be measured. 
In a typical control problem, there are additional goals for the design, like meeting 
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certain specifications on the transient response or certain constraints on the control 
input. These requirements could be conflicting and the designer has to trade them off. 
The desire to optimize the design leads to various optimal control formulations. When 
model uncertainty is taken into consideration, issues of sensitivity and robustness come 
into play. The attempt to design feedback control to cope with a wide range of model 
uncertainty leads to either robust or adaptive control problems. In robust control, the 
model uncertainty is characterized as a perturbation of a nominal model. You may think 
of the nominal model as a point in a space and the perturbed models as points in a ball 
that contains the nominal model. A robust control design tries to meet the control 
objective for any model in the “ball of uncertainty.” Adaptive control, on the other hand, 
parameterizes the uncertainty in terms of certain unknown parameters and tries to use 
feedback to learn these parameters on-line, that is, during the operation of the system. In 
a more elaborate adaptive scheme, the controller might be learning certain unknown 
nonlinear functions, rather than just learning some unknown parameters. There are also 
problem formulations that mix robust and adaptive control. In the current chapter, we 
limit our discussions to the basic tasks of stabilization, tracking, and disturbance 
rejection. 
 
2. Stability 
 
Stability analysis plays a central role in control. There are different concepts of stability. 
The most dominant one is the concept formulated by Lyapunov at the end of the 
nineteenth century and further developed by many researchers throughout the twentieth 
century. The concept is concerned with the stability of steady-state solutions, such as 
equilibrium points and periodic orbits. In the 1960s and 70s, concept of input-output 
stability and passivity were formulated by Popov, Sandberg, Willems, and Zames, 
among others. These concepts are particularly useful when we analyze the feedback 
connection of Figure 1.  
 

 
 

Figure 1:  Feedback connection. 
 
2.1. Lyapunov Stability 
 
In its simplest form, Lyapunov stability is concerned with the stability of an equilibrium 
point of the nonlinear system ( ).x f x=  Lyapunov formulated the notions of stability 
and asymptotic stability of an equilibrium point. For an asymptotically stable 
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equilibrium point, all trajectories starting in a region that contains the point, called the 
region of attraction, converge to it as time tends to infinity. The key idea of Lyapunov 
stability is that if we take a scalar function ( )V x  that vanishes at the equilibrium point 
and is positive in its neighborhood and if we calculate the time derivative of this 
function using the chain rule 
 

( )V VV x f x
x x

∂ ∂
= =
∂ ∂

 

 
then the sign of V  reveals whether V  is increasing or decreasing along the trajectory 
passing through .x  If we can show that V  is negative in the neighborhood of the 
equilibrium point, we can conclude that it is asymptotically stable. The ingenious idea 
here is that we do not have to solve the state equation in order to determine that the 
trajectories move toward the equilibrium point. We only need to examine the sign of .V  
The chapter on Lyapunov stability reviews the basic elements of the theory. It also 
describes an important extension of the basic theory, known as the invariance principle, 
which allows us to relax the requirement that V  be negative everywhere around the 
equilibrium point. It allows V to be zero in certain sets, as long as the trajectories cannot 
stay in those sets over a period of time. Lyapunov theory is very versatile and applies to 
a wide range of mathematical models. The main challenge is finding the Lyapunov 
function. Although there is no general systematic method to find a Lyapunov function, 
research over the years has shown how to choose Lyapunov function candidates for 
certain classes of nonlinear systems. 
 
2.2. Input-Output Stability 
 
While Lyapunov stability is developed for state models (simultaneous first-order 
differential equations), an alternative approach for modeling dynamical systems is the 
input-output approach. An input-output model relates the output of the system directly 
to the input, with no knowledge of the internal structure that is represented by the state 
equation. The system can be represented by the relation ,y Hu=  where H  is some 
mapping or operator that specifies the output y  in terms of the input .u  For linear time-
invariant systems, such input-output models take the form of the convolution integral, or 
its equivalent transfer function model. Developing similar models for nonlinear systems 
was challenging, but starting in the 1960s progress was made towards developing 
functional models for nonlinear systems. This is reviewed in the chapter on Volterra 
and Fliess Series Expansion.  
 
In input-output stability, the input u  belongs to a space of signals ;L  e.g., the space of 
bounded signals or the space of square-integrable signals. Keeping aside some 
technicalities, we can say that the system is L  stable if the output satisfies  
 

( )y uγ β≤ +  
 
where ⋅  is an appropriately defined norm on the space signals, γ  is a gain function, 
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which is strictly increasing and vanishes at zero, and β  is a nonnegative bias constant. 
When the preceding inequality takes the special form 
 

y uγ β≤ +  
 
where γ  is a positive constant, the system is finite-gain L  stable and the smallest such 
γ  is called the gain of the system. This notion of input-output stability is introduced in 
the chapter on Input-Output Stability. It applies, of course, to the case when the input-
output relationship is determined by a state model, but its real strength comes from the 
fact that it applies to systems that cannot be represented by a finite-dimensional state 
model, such as time-delay and infinite-dimensional systems. 
 
2.3. Passivity 
 
In the study of physical systems, such as electrical networks or mechanical systems, the 
concept of stored energy is often useful in understanding the behavior of the system. For 
example, in an RLC electrical network with passive components, the energy absorbed 
by the network over any period of time is greater than or equal to the increase in the 
stored energy over the same period. In the 1960s, Popov, Zames, and others, and later 
on in the 1970s, Willems, Hill, Moylan, and others, were able to extend this notion to a 
dynamical system for which a physical energy might not be well defined. The extension 
is based on a storage function (playing the role of energy) and a supply rate (playing the 
role of power flow into a network) such that the integral of the supply rate over any 
period of time is greater than or equal to the increase in the storage function over the 
same period. Such a system is called dissipative. When the supply rate is the inner 
product of the input and output vectors, that is, ,Tu y  the system is said to be passive. 
Passive systems are introduced in the chapters on Analysis of Nonlinear Control 
Systems and Passivity Based Control. 
 
2.4. Feedback Systems 
 
Input-output stability and passivity concepts have been very effective in analyzing the 
stability of the feedback connection of Figure 1. Two celebrated results for this system 
are the small-gain theorem and the passivity theorem (see Analysis of Nonlinear Control 
Systems, Input-Output Stability, and Passivity Based Control). The (classical) small-
gain theorem says that if the feedback components 1H  and 2H  are finite-gain L  stable 
with gains 1γ  and 2γ , then the feedback connection is finite-gain L  stable if 1 2 1.<γ γ  
The passivity theorem says that the feedback connection of two passive systems is 
passive. These two theorems can be viewed as nonlinear generalizations of the linear 
gain and phase results in the Nyquist-Bode theory. When 1H  and 2H  are stable linear 
time-invariant systems represented by their transfer functions, the Nyquist-Bode theory 
tells us that the feedback connection will be stable if the loop gain is less than one or the 
loop phase shift is less than 180 .  The connection to the small-gain theorem is obvious. 
The connection to the passivity theorem can be seen by noting that for a linear system to 
be passive, its phase shift cannot exceed 90 .  
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The passivity theorem plays an important role in passivity based control (see Passivity 
Based Control). The small-gain theorem provides a conceptual framework for 
understanding many of the robustness results that arise in the study of dynamical 
systems, especially when feedback is used. Quite often, dynamical systems subject to 
model uncertainties can be represented in the form of a feedback connection with 1,H  
say, as a stable nominal system and 2H  as a stable perturbation. Then, the requirement 

1 2 1<γ γ  is satisfied whenever 2γ  is small enough. The classical small-gain theorem 
applies to finite-gain stability. In the 1990, Hill, Jiang, Mareels, Praly, and Teel 
extended the small-gain theorem to the more general case when a gain γ  is replaced by 
a gain function ( ) ,γ ⋅  leading to a small-gain condition of the form 
 

( )( )1 2 ,s < sγ γ for all 0s >  
 
3. Sensitivity Analysis and Asymptotic Methods 
 
The chapter on Analysis of Nonlinear Control Systems describes some useful analysis 
tools, namely, sensitivity analysis, the averaging method and the singular perturbation 
method.  
 
An essential factor in the validity of any mathematical model is the continuous 
dependence of its solutions on the data of the problem. Sensitivity equations describe 
the effect of small parameter variations on the performance of the system. 
 
Exact closed-form analytic solutions of nonlinear differential equations are possible 
only for a limited number of special classes of differential equations. In general, we 
have to resort to approximate solutions. There are two distinct categories of 
approximation methods that engineers and scientists should have at their disposal as 
they analyze nonlinear systems: (1) numerical solution methods and (2) asymptotic 
methods. Asymptotic methods reveal multiple-time-scale structures inherent in many 
practical problems. Quite often, the solution of the state equations exhibits the 
phenomenon that some variables move in time faster than other variables, leading to the 
classification of variables as “slow” and “fast.” The averaging and singular perturbation 
methods deal with the interaction of slow and fast variables. In the case of averaging, 
the fast variables take the form of fast oscillations, while in singular perturbations they 
appear as rapidly decaying signals.  
 
4. Linearization and Gain Scheduling 
 
Faced with the difficult task of designing feedback control for nonlinear systems, it is 
only natural that control engineers appealed to the neat results available for linear 
systems. By linearizing a nonlinear system about an operating (equilibrium) point, or a 
desired trajectory, we obtain a linear model that approximates the nonlinear system in 
the vicinity of the operating point. We can then use the linear control theory to design a 
feedback controller, which we apply to the nonlinear system and expect it to work as 
long as the trajectories of the nonlinear system remain in the vicinity of the operating 
point. We illustrate the design-via-linearization approach by considering the 
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stabilization problem. Consider the system 
 

( ) ( ), ,x f x u y h x= =        (1) 
 
where (0,0) 0, (0) 0,f h= =  and ( , ), ( )f x u h x  are continuously differentiable in a 
domain that contains the origin ( 0, 0).x u= =  We want to design an output feedback 
controller (using only measurements of y ) to stabilize the system; that is, to make the 
origin an asymptotically stable equilibrium point of the closed-loop system. 
Linearization of (1) about ( 0, 0)x u= =  results in the linear system  
 

,x Ax Bu y Cx= + =        (2) 
 
where 
 

( ) ( ) ( )
0, 0 0, 0 0

, , , ,
x u x u x

f f hA x u B x u C x
x u x= = = = =

∂ ∂ ∂
= = =
∂ ∂ ∂

 

 
and [ ]f x∂ ∂ is a Jacobian matrix whose ( , )i j  element is .i jf x∂ ∂  Assume ( , )A B  is 
stabilizable and ( , )A C  is detectable and design a linear dynamic output feedback 
controller 
 

,z Fz Gy u Lz My= + = +        (3) 
 
such that the closed-loop matrix 
 

A BMC BL
GC F

+⎡ ⎤
⎢ ⎥
⎣ ⎦

        (4) 

 
is Hurwitz; that is, all its eigenvalues have negative real parts. An example of such 
design is the observer-based controller 
 

( ) ,z A BK HC z Hy u Kz= − − + = −      (5) 
 
where K  and H  are designed such that A BK−  and A HC−  are Hurwitz. The details 
of such a linear design are given in the chapters on Design of State Space controllers 
(Pole Placement) for SISO systems and Control of Linear Multivariable Systems. When 
the controller (3) is applied to the nonlinear system (1) it results in the closed-loop 
system 
 

( , ( )), ( )x f x Lz Mh x z Fz Gh x= + = +      (6) 
 
It can be verified that the origin ( 0, 0)x z= =  is an equilibrium point of the closed-loop 
system (6) and linearization about the origin results in the Hurwitz matrix of (4). It 
follows from Lyapunov theory that the closed-loop system (6) has an asymptotically 
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stable equilibrium point at the origin. 
 
The linearization approach is clearly local; that is, it can only guarantee asymptotic 
stability but it cannot, in general, prescribe the region of attraction nor achieve global 
asymptotic stability. Gain scheduling is a technique that can extend the validity of the 
linearization approach to a range of operating points. In many situations, it is known 
how the dynamics of a system change with its operating point. It might even be possible 
to model the system in such a way that the operating point is parameterized by one or 
more variables, which are called scheduling variables. In such situations, we may 
linearize the system at several equilibrium points (corresponding to different values of 
the scheduling variables), design a linear feedback controller at each point, and 
implement the resulting family of linear controllers as a single controller whose 
parameters are changed by monitoring the scheduling variables. Such a controller is 
called a gain-scheduled controller. 
 
The concept of gain scheduling originated in connection with flight control systems. 
The nonlinear equations of motion of an airplane or a missile are linearized about 
selected operating points that capture the key modes of operation throughout the flight 
envelope. Linear controllers are designed to achieve the desired stability and 
performance requirements for the linearizations about the selected operating points. The 
parameters of the controllers are then interpolated as functions of gain scheduling 
variables; typical variables are dynamic pressure, Mach number, altitude, and angle of 
attack. Finally, the gain-scheduled controller is implemented on the nonlinear system. 
 
5. Nonlinear Geometric Methods 
 
A turning point in nonlinear control came in the 1980s with the development of the 
nonlinear geometric approach. Differential geometry proved to be an effective method 
for the analysis and design of nonlinear control systems. Synthesis problems like 
disturbance decoupling, non-interacting control, and output regulation have been dealt 
with using the tools of differential geometry. The most important achievements of the 
differential geometric approach have been in the study of controllability, observability 
and feedback linearization. In the 1960s, Kalman showed the important role of played 
by controllability and observability in linear control systems. Starting in the early 1970s 
research has been directed towards studying these concepts for nonlinear systems. The 
chapter on Controllability and Observability of Nonlinear Systems surveys the main 
approaches for studying controllability and observability of nonlinear systems, with 
emphasis on the differential geometric approach. The idea of feedback linearization 
appeared toward the end of the 1970s, motivated by physical examples like the 
computed torque method of robotic manipulators. The basic question of feedback 
linearization is: Can we transform a nonlinear system into an equivalent linear system 
by state feedback and/or a change of variables? The answer to this question takes the 
form of a set of simultaneous linear partial differential equations. The differential 
geometric approach made it possible to characterize the existence of a solution for these 
equations. More importantly, it led to the development of the concepts of relative 
degree, zero dynamics, and normal form, which permeate our current thinking about 
nonlinear systems. We will come back to these concepts in the next section. The main 
elements of the theory of feedback linearization are reviewed in the chapter on 
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Feedback Linearization of Nonlinear Systems.  
 
Understanding the differential geometric approach requires knowledge of its tools; in 
particular, manifolds, Lie derivatives, Lie brackets, distributions, and the Frobenius 
theorem (see Lie Bracket). The chapter on Differential Geometric Approach and 
Application of Computer Algebra describes how computer algebra can be applied to 
perform the tests that arise in the differential geometric approach. 
 
- 
- 
- 
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