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Summary 
 
Bifurcation control generally refers to the design of a controller that can modify the 
bifurcating properties of a given nonlinear system, so as to achieve some desired 
dynamical behavior. Typical bifurcation control objectives include, but are not limited 
to, delaying the onset of an inherent bifurcation, introducing a new bifurcation at a 
preferred parameter value, changing the parameter value of an existing bifurcation 
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point, modifying the shape or type of a bifurcation chain, stabilizing a bifurcation point 
or a bifurcated solution, monitoring the multiplicity, amplitude, and/or frequency of 
some limit cycles emerging from bifurcations, optimizing the system performance near 
a bifurcation point, creating a particular bifurcation purposefully, or even a combination 
of some of these objectives. This chapter introduces this challenging and yet stimulating 
and promising field of research, putting the main subject of bifurcation control into 
perspective.   
 
1. Introduction 
 
Bifurcation Control, in general terms, refers to the task of designing a controller that can 
modify the bifurcating properties of a given nonlinear system, thereby achieving some 
desired dynamical behavior. Typical bifurcation control objectives include delaying the 
onset of an inherent bifurcation, introducing a new bifurcation at a preferred parameter 
value, changing the parameter value of an existing bifurcation point, modifying the 
shape or type of a bifurcation chain, stabilizing a bifurcation point or a bifurcated 
solution, monitoring the multiplicity, amplitude, and/or frequency of some limit cycles 
emerging from bifurcation, optimizing the system performance near a bifurcation point, 
creating a particular bifurcation purposefully, or even a combination of some of these 
objectives.  
 
Bifurcation control not only is important in its own right, as further discussed in this 
chapter, but also suggests an effective strategy for chaos control, since bifurcation and 
chaos are usually “twins” and, in particular, period-doubling bifurcation is a typical 
route to chaos in many nonlinear dynamical systems.  
 
It is now known that bifurcations can be controlled via various methods. Some 
representative approaches employ linear or nonlinear state-feedback controls e.g., use 
time-delayed feedback, apply a washout-filter-aided dynamic feedback controller, 
employ harmonic balance approximations, utilize quadratic invariants in normal forms, 
and so on. Some of these effective methods will be briefly introduced and described in 
the present chapter, along with a few closely related topics, as well as some potential 
real-world applications of bifurcation control and its implications to other areas of 
dynamical and control systems.  
 
This chapter is an updated and simplified version of the tutorial of Chen, Moiola and 
Wang (2000) (courtesy of World Scientific Pub. Co., Singapore) and offers an overview 
of the interesting but challenging, and yet quite promising field of research on 
bifurcation control.  
 
2. Bifurcation Control – The New Challenge 
 
To start with, it may be illuminating to consider one simple yet representative system — 
the discrete-time Logistic map — to see how bifurcation control is different from most 
classical systems control, and how difficult this kind of control tasks would be. This 
may help appreciate the technical challenge of the bifurcation control problems in 
general.  
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The classical Logistic map is described by  
 

1 ( ) (1 )k k k kx f x p p x x+ = , := − ,       (1) 
 
where 0p >  is a real variable parameter. Two equilibria of the map can be found by 

solving the algebraic equation ( )x f x p= , , which are: 0x∗ =  and ( 1)x p p∗ = − / . 
Further examination of the Jacobian, 2J f x p p x= ∂ /∂ = − , reveals that the stabilities of 
these equilibria depend on parameter p .  
 
For 0 1p< < , the point 0x∗ =  is stable. Starting from any bounded initial point, the 
iterated sequence will converge to zero as k →∞ . However, for 1 3p< < , all nonzero 

initial points of the map converge to ( 1)x p p∗ = − /  instead. The dynamical evolution of 
the system behavior, as p  is gradually increased from 3 0.  to 4 0.  by small steps, is 
very complex and interesting, as shown in Fig. 1. As can be seen from the figure, at 

3p =  a stable period-two orbit 1 2{ }x x,  is born out of x∗ , with  
 

1 2 2(1 2 3 ) (2 )x p p p p, = + ± − − / .  
 
As p  increases to the value of 1 6 3 44948…+ = . , each of these two points bifurcates 
out into two new points. These four points together constitute a period-four solution of 
the map (at 1 6p = + ). As p  continuously moves through a sequence of values: 
3 44948…. , 3 5644…. , , an infinite series of bifurcations is created by such period-
doubling, which eventually leads to chaos:  
 

period 1 period 2 period 4 period 2 chaosk→ → → → →  
 

 
 

Figure 1: Period-doubling of the Logistic map. 
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At this point, several control problems may be raised: Is it possible (and, if so, how) to 
find a simple (say, linear) control sequence, { }ku , such that the controlled Logistic 
system  
 

1 ( ) (1 )k k k k kx F x p p x x u+ = , = − +       (2) 
 
can achieve, for instance, the following goals:  
 

(i) The limiting chaotic behavior of the period-doubling bifurcation process is 
delayed, or completely suppressed.  

(ii) The first or the second bifurcation is delayed to take place, or some bifurcations 
are changed either in form or in stability.  

(iii) The asymptotic behavior of the system becomes chaotic (if chaos is beneficial), 
when the parameter p  is currently not in the chaotic region.  

 
Obviously, these are not typical objectives in conventional control theory, and may not 
be solved by classical stability-based feedback control methods.  
 
3. Bifurcations in Control Systems 
 
The example of system bifurcations discussed above is simple but illustrative. In fact, 
bifurcations can occur in many nonlinear dynamical systems, even in systems that are 
under feedback or adaptive controls. This perhaps comes as a surprise to control 
engineers, and may be counterintuitive; however, local instability and complex 
dynamical behavior can indeed result from such globally controlled systems – if 
adequate process information is not available for feedback or for parameter estimation. 
In these situations, one or more poles of the closed-loop transfer function of the 
linearized system may move to cross over the stability boundary, potentially leading to 
signal divergence as the control process continues. Sometimes, this may not lead to a 
global unboundedness in a complex nonlinear system, but rather, to self-excited 
oscillations, bifurcations, and even chaos.  
 
Automatic Gain Control (AGC) loops provide a typical example of feedback control 
systems with bifurcation phenomena. AGCs are very popular in industrial applications, 
such as in most receivers of communication systems. Both the Video Graphics Array 
(VGA) and the detector are nonlinear, so that the AGC loop can have complex behavior 
such as homoclinic bifurcation leading to chaos. Its discrete version also has the 
common route of period-doubling bifurcations to chaos, similar to the Logistic map 
discussed above.  
 
As a second simple example of feedback control systems, a single pendulum controlled 
by a linear proportional-derivative (PD) controller may also have various bifurcations. 
In fact, even a feedback system with a linear plant and a linear controller can produce 
bifurcations and chaos – if a simple nonlinearity (e.g., saturation) exists somewhere in 
the loop.  
 
Adaptive control systems are more likely to produce bifurcations than other control 
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systems, due to the frequent changes of system stabilities. Different pathways that lead 
to estimator instability in a model-referenced adaptive control system can be identified. 
Similarly, rich bifurcation phenomena have been observed in discrete-time adaptive 
control systems.  
 
Bifurcations are ubiquitous in physical systems, need not subject to control, such as the 
well-known example of power systems which generally have rich bifurcation 
phenomena. In particular, when the consumers’ demands for power reach a peak, the 
dynamics of the service power network may move to its stability margin. This may 
yield oscillations and bifurcations, and quickly result in voltage collapse.  
 
A typical double pendulum can also display bifurcation as well as chaotic motions. 
Some rotational mechanical systems also have similar behavior. A road vehicle under 
steering control can have Hopf bifurcation when it loses stability, which may also 
develop chaos and even hyperchaos. A hopping robot, even a simple two-degree-of-
freedom flexible robot arm, can produce unusual vibrations and undergo period-
doubling which leads to chaos. An aircraft rotating stall during flight, either below a 
critical speed or over a critical angle-of-attack, is caused by bifurcations. Dynamics of 
ships can exhibit bifurcations according to wave frequencies that are close to the natural 
frequency of the ship, creating oscillations and chaotic motions leading to ship capsize. 
Simple nonlinear circuits are rich sources of bifurcation phenomena. Many other 
systems have bifurcation properties, including cellular neural networks, laser machines, 
aero-engine compressors, weather, and biological population dynamics, to mention only 
those typical ones.  
 
Given this background, it can be easily seen that controlling bifurcations will have 
tremendous impacts on many real-world applications. Meanwhile, it also provides new 
motivations to control theory development. 
 
4. Preliminaries of Bifurcation Theory 
 
This section first introduces some mathematical definitions of bifurcations.  
 
It is convenient to consider a two-dimensional, parameterized, nonlinear dynamical 
system of the form  
 

( )
( )

x f x y p
y g x y p
= , ;⎧

⎨ = , ; ,⎩
        (3) 

 
where p  is a real variable system parameter.  
 
Let 0 0( ) ( ( ) ( ))x y x p y p∗ ∗ ∗ ∗, = ,  be an equilibrium of the system at 0p p= , satisfying 

both 0( ) 0f x y p∗ ∗, ; =  and 0( ) 0x y p∗ ∗, ; =g . If the equilibrium is stable (resp., unstable) 
for 0p p>  but unstable (resp., stable) for 0p p< , then there is a qualitative change of 

dynamical behavior. Here, 0p  is a bifurcation value of p , and 0( )x y p∗ ∗, ,  is a 
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bifurcation point in the parameter space of coordinates x y p− − . A few examples are 
given below to distinguish several different but typical bifurcations.  
 
4.1. Bifurcations in One-dimensional Systems 
 
One-dimensional maps, used to define continuous-time systems here, are convenient to 
use for conceptual illustrations.  
 
The one-dimensional system  
 

2( )x f x p p x x= ; = −  
 
has two equilibria: 1 0x∗ =  and 2x p∗ = . If p  is varied, then there are two equilibrium 
curves (see Fig. 2). Since the Jacobian of the system is 0xJ f x p== ∂ /∂ | = , it is clear that 

for 0 0p p< =  the equilibrium 1 0x∗ =  is stable, but for 0 0p p> =  it becomes unstable. 

Hence, 1 0( ) (0 0)x p∗, = ,  is a bifurcation point. This is called a transcritical bifurcation. 
In this and the following figures, the solid curves indicate stable equilibria and the 
dashed curves, the unstable ones.  
  

 
 

Figure 2: The transcritical bifurcation. 
 
The one-dimensional system  
 

2( )x f x p p x= ; = −  
 
has an equilibrium point, 1 0x∗ = , at 0 0p = , and an equilibrium curve, 2( )x p∗ = , at 

0p ≥ , where 2x p∗ =  is stable and 3x p∗ = −  is unstable for 0 0p p> = . This is 
called a saddle-node bifurcation (see Fig. 3).  
 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION - Vol. XIII- Control of Bifurcations - Guanrong Chen 
 

©Encyclopedia of Life Support Systems (EOLSS) 

 
 

Figure 3: The saddle-node bifurcation. 
 
The one-dimensional system  
 

3( )x f x p p x x= ; = −  
 
has two equilibrium curves: one is 1 0x∗ =  for all p  and another is 2( )x p∗ =  for 0p ≥ . 

Its Jacobian is 23( )J p x∗= − , so 1 0x∗ =  is unstable for 0 0p p> =  and stable for 

0 0p p< = . Also, the entire equilibrium curve 2( )x p∗ =  is stable for all 0p >  
(because, at which the Jacobian is 2J p= − ). This is called a pitchfork bifurcation, and 
is depicted in Fig. 4.  
 

 
 

Figure 4: The pitchfork bifurcation. 
 
The above-discussed bifurcation phenomena for one-dimensional parameterized 
nonlinear systems are usually referred to as static bifurcations. Analysis of such 
elementary static bifurcations by using a frequency domain approach is not only 
possible but quite efficient.  
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It should be noted that not all nonlinear dynamical systems have bifurcations, as can be 
verified by examining the following simple example:  
 

3( )x f x p p x= ; = − .  
 
This equation has an entire stable equilibrium curve, 1 3x p /= , and does not have any 
bifurcation as the real parameter p  is varied.  
 
4.2. Hopf Bifurcation 
 
In higher-dimensional systems (or maps), bifurcation phenomena are generally complex 
and complicated. For instance, in addition to the aforementioned static bifurcations, 
there is another important type of bifurcation existing in systems of higher dimensions 
— the Hopf bifurcation, classified as a dynamic bifurcation.  
 
Hopf bifurcation occurs in the following scenario: As the parameter p  is varied to pass 
a critical value 0p , the system Jacobian has one pair of complex conjugate eigenvalues 
moving from the left-half plane to the right, crossing the imaginary axis, while all the 
other eigenvalues remain to be stable. At the moment of crossing, the real parts of the 
two eigenvalues become zero, and the stability of the existing equilibrium changes from 
being stable to unstable. Also, at the moment of crossing, a limit cycle is born. These 
phenomena are supported by the following classical result (see Fig. 5):  
 
Theorem (Poincaré-Andronov-Hopf)  
 
Suppose that the two-dimensional system (3) has a zero equilibrium, ( ) (0,0)x y∗ ∗, = , 
and that its associate Jacobian has a pair of purely imaginary eigenvalues, ( )pλ  and 

( )pλ . If 
 

0

{ ( )} 0
p p

d p
d p
λ

=

ℜ
>  

 
where ℜ  denotes ‘the real part of’, then 
 

1. 0p p=  is a bifurcation value of the system;   
2. for close enough values 0p p< , the zero equilibrium is asymptotically 

stable;   
3. for close enough values 0p p> , the zero equilibrium is unstable;  
4. for close enough values 0p p≠ , the zero equilibrium is surrounded by a 

limit cycle of magnitude 0( )O p p| − | .  
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Figure 5: Two types of Hopf bifurcation in the phase plane. 
 
As indicated in Fig. 5, the Hopf bifurcations are classified as supercritical (resp., 
subcritical) if the equilibrium is changed from stable to unstable (resp., from unstable to 
stable), where for the latter case the eigenvalues move from the right to the left. The 
same terminology of supercritical and subcritical bifurcations applies also to some other 
non-Hopf types of bifurcations.  
 
For the discrete-time setting, consider a two-dimensional parameterized system:  
 

1

1

( )
( )

k k k

k k k

x f x y p
y g x y p

+

+

= , ;⎧
⎨ = , ; ,⎩

        (4) 

 
with a real variable parameter p  and an equilibrium point ( )x y∗ ∗, , satisfying 

( )x f x y p∗ ∗ ∗= , ;  and ( )y g x y p∗ ∗ ∗= , ;  simultaneously for all p . Let ( )J p  be its 
Jacobian at this equilibrium, and 1 2 ( )pλ ,  be its eigenvalues, with 12 ( ) ( )p pλ λ= . If  
 

1
1

( )
( ) 1 and 0

p p
p

p
p

λ
λ ∗

∗
=

∂ | |
| | = > ,

∂
    (5) 

 
then the system undergoes a Hopf bifurcation at ( )x y p∗ ∗ ∗, , , in a way analogous to the 
continuous-time setting. Both supercritical and subcritical Hopf bifurcations exist in the 
discrete case, which can be determined via a sequence of coordinate transformations.  
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5. State-Feedback Control of Bifurcations 
 
First, consider a one-dimensional discrete-time parameterized nonlinear control system 
of the form  
 

1 ( ) ( ) ( )k k k kx F x p f x p u x p+ = ; := ; + ; ,      (6) 
 
where p  is a real variable parameter, 0x ∈R  the initial state, and ( )u ⋅  the state-
feedback controller to be designed. The map F: →R R  is autonomous, representing the 
dynamical behavior of the control system that can be visualized in the kx – 1kx +  plane, 
called the discrete phase plane, where 0 1 2k = , , , .  
 
Bifurcation analysis for this control system may be formulated as the following routine 
checking procedure for convenience in designing the controller through a trial-and-error 
process.  
 
- 
- 
- 
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