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Summary 
 
The research field of chaotic systems control has seen rapid development since the late 
1980s. This state-of-the-art technology in the beginning of the 21st century is presented 
in this article. Preliminaries are given to the notion and properties of chaotic systems, 
models of controlled plants, as well as control goals. Several major approaches in this 
research field are discussed in detail: feedforward or “nonfeedback” control (via 
periodic excitation input); OGY method (based on linearization of Poincaré maps); 
Pyragas method (using time-delay feedback); traditional (linear and nonlinear) 
engineering control methods; adaptive and intelligent control strategies including neural 
networks and fuzzy control. Bifurcation control, on the other hand, has also been 
developed rapidly, for which feedback control, washout-filter, normal forms, harmonic 
balance approximation, and frequency-domain control methods all work to their 
advantages. A number of existing and potential applications of controlling chaos and 
bifurcations in science and engineering are described briefly. Some directions of current 
research and prospects of the field are outlined. 
 
1. Introduction 
 
Chaos control refers to purposefully manipulating chaotic dynamical behaviors of some 
complex nonlinear systems. Bifurcation control, on the other hand, refers to the task of 
designing a controller that can modify the bifurcating properties of a given nonlinear 
system, so as to achieve some desirable dynamical behaviors. Bifurcation control not 
only is important in its own right, but also suggests an effective strategy for chaos 
control, since bifurcation and chaos are usually “twins;” in particular, period-doubling 
bifurcation is a typical route to chaos in many nonlinear dynamical systems. 
 
As a new and young discipline, chaos and bifurcations control has in effect come into 
play with many traditional scientific and technological advances today. Automatic 
control theory and practice, on the other hand, is a traditional and long-lasting 
engineering discipline. It has recently rapidly evolved and expanded, to overlap with 
and sometimes completely encompass many new and emerging technical areas of 
developments, and chaos and bifurcations control is one of them.  
 
Both chaos control and bifurcation control technologies promise to have a major impact 
on many novel, perhaps not-so-traditional, time- and energy-critical engineering 
applications. Examples include such as data traffic congestion control in the Internet, 
encryption and secure communication at different levels of communications, high-
performance circuits and devices (e.g., delta-sigma modulators and power converters), 
liquid mixing, chemical reactions, power systems collapse prediction and protection, 
oscillators design, biological systems modeling and analysis (e.g., the brain and the 
heart), crisis management (e.g., jet-engine serge and stall), nonlinear computing and 
information processing, and critical decision-making in political, economic as well as 
military events. In fact, this new and challenging research and development area has 
become an attractive scientific inter-discipline involving control and systems engineers, 
theoretical and experimental physicists, applied mathematicians, and physiologists 
alike. 
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There are many practical reasons for controlling or ordering chaos and bifurcations. In a 
system where chaotic and bifurcating responses are undesired or harmful, they should 
be reduced as much as possible, or totally suppressed. Examples of this include 
avoiding fatal voltage collapse in power networks, eliminating deadly cardiac 
arrhythmias, guiding disordered circuit arrays (e.g., multi-coupled oscillators and 
cellular neural networks) to reach a certain level of desirable pattern formation, 
regulating dynamical responses of mechanical and electronic devices (e.g., diodes, laser 
machines, and machine tools), and organizing a multi-agency corporation to achieve 
optimal performance.  
 
Ironically, recent research has shown that chaos and bifurcations can actually be quite 
useful under certain circumstances, and there is growing interest in utilizing the very 
nature of them, particularly in some novel time- and/or energy-critical applications. A 
salient observation about this possibility is that chaos enables a system to explore its 
every dynamical possibility due to its ergodicity. When chaos is controllable, it can 
provide the system designer with an exciting variety of properties, richness of 
flexibility, and a cornucopia of opportunities. Oftentimes, conventional engineering 
design tried to completely eliminate such “irregular” dynamical behaviors of a system. 
However, such over-design is usually accomplished at the high price of loss of 
flexibility in achieving optimal performance near the stability boundaries, or at the 
expense of radically modifying the original system dynamics which in many cases is 
undesirable or unnecessary. Likewise, a prominent feature of bifurcation is its close 
relation with various vibrations (periodic oscillations or limit cycles), which sometimes 
are not only desirable but may actually be necessary. Mechanical vibrations and some 
material and liquid mixing processes are good examples in which bifurcations (and 
chaos) are very desirable. A further idea, suggested as useful in power systems, is to use 
the onset of a small oscillation as an indicator for proximity to collapse. In control 
systems engineering, the deliberate use of nonlinear oscillations has been applied 
effectively for system identification.  
 
It has been shown that the sensitivity of chaotic systems to small perturbations can be 
used to rapidly direct system trajectories to a desired target using minimal control 
energy. This may be crucial, for example, in inter-planetary space navigation. A suitable 
manipulation of chaotic dynamics, such as stability conversion or bifurcation delay can 
significantly extend the operational range of machine tools and aircraft engines, enhance 
the artificial intelligence of neural networks, and increase coding/decoding efficiency in 
signal and image encryption and communications.  
 
It has been demonstrated that data traffic through the Internet is likely to be chaotic. 
Special chaos control strategies may help network designers in better congestion 
control, thereby further benefiting the rapidly evolving and expanding Internet, to 
handle the exponentially increasing demands from the industry and the commercial 
market.  
 
Fluid mixing is another good example in which chaos is not only useful but actually 
very desirable. The objective here is to thoroughly mix together two or more fluids of 
different kinds, while minimizing the control energy required. For this purpose, fluid 
mixing turns out to be much simpler to achieve if the particle motion dynamics are 
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strongly chaotic. Otherwise, it is difficult to obtain rigorous mixing properties due to the 
possibility of invariant two-tori in the flow. This has been one of the main subjects in 
fluid-mixing processing, known as chaotic advection. Chaotic mixing is also important 
in engineering applications involving heat transfer. One example is in plasma heating 
within a nuclear fusion reactor, where heat waves are injected into the reactor, for which 
the best result is obtained when the convection inside the reactor is chaotic.  
 
Within the context of biological systems, chaos and bifurcations control seems to be a 
crucial mechanism employed by the human brain in carrying out many of its tasks such 
as learning, perception, memorization and particularly conceptualization. Additionally, 
some recent laboratory studies reveal that the complex dynamical variability in a variety 
of normal-functioning physiological systems demonstrates features reminiscent of chaos 
and bifurcations. Some medical evidence lends support to the idea that control of certain 
chaotic cardiac arrhythmias may soon lead to the design of a safe and highly effective 
intelligent pacemaker. In fact, chaos and bifurcation have become public focal points in 
various research areas of life sciences, medicine research, and biomedical engineering.  
 
Motivated by many potential real-world applications, current research on controlling 
chaos and bifurcations has proliferated in recent years. With respect to theoretical 
considerations, chaos and bifurcations control poses a substantial challenge to system 
analysts. This is due to the extreme complexity and sensitivity of chaotic and bifurcating 
dynamics, which in turn is associated with the reduction in long-term predictability and 
short-term controllability of chaotic systems.  
 
A controlled chaotic or bifurcating system is inherently non-autonomous. In most cases, 
it cannot be converted to an autonomous system since the required time-dependent 
controller has yet to be designed and therefore cannot be defined as a new system state 
variable. Possible time-delay, noise, and coupling influences often make a controlled 
chaotic or bifurcating system extremely complex topologically. As a result, many 
existing theories and methodologies for autonomous systems are no longer applicable to 
the analysis and control of many chaotic and bifurcating systems. On the other hand, 
chaos and bifurcations control poses new challenges to controller designers and 
automation engineers. A successful controller implementation in a chaotic or bifurcating 
environment is generally difficult to achieve due to the extreme sensitivity of chaos to 
parameter variations and noise perturbations, and to the non-robustness of chaos with 
respect to the structural stability of the physical devices involved.  
 
Notwithstanding many technical obstacles, both theoretical and practical developments 
in this area have experienced remarkable progress in the last decade. It is now known 
that both chaos and bifurcations can be controlled via various methods, and yet there are 
still many challenging control-theory-oriented problems remaining to be solved and 
there are many potential engineering applications of this new technology to be further 
explored. 
 
 This article aims at presenting some current achievements in this challenging field at 
the forefront of research, with emphasis on the engineering perspectives, 
methodologies, and potential applications, as well as some further research outlooks in 
these exciting and promising new research areas of chaos and bifurcations control. 
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2. Features of Chaos 
 
Chaotic system is a deterministic dynamical system exhibiting irregular, seemingly 
random behaviors. Such behaviors can be observed if any two trajectories, starting close 
to each other, will diverge after some time (the so-called “sensitive dependence on 
initial conditions”)  
 
It means that even if one knows the state of the system with high accuracy, one cannot 
give an accurate prediction of its future behavior.  
 
There exist different mathematical definitions of chaotic systems and chaotic behaviors. 
Most definitions are based on appropriate formalization of the stability concept and on 
the notion of attractor: minimal set of points in the state space of the system, attracting 
all the nearby trajectories starting from its vicinity. 
 
 Standard examples of attractors are stable equilibrium and stable limit cycle. Stability 
in these examples means that if two trajectories start on the attractor close to each other, 
they remain close with the growth of time (see Stability Concepts). 
 
In the middle of the XXth century some counterintuitive examples of dynamical 
systems were found where two trajectories, starting close to each other, diverge after 
some time to a finite distance. Such a behavior is nothing but instability of trajectories 
within attractor.  
 
If, in addition, the attractor is bounded, its trajectories should exhibit irregular, 
seemingly random behavior which corresponds to an intuitive sense of the term 
“chaos.” Therefore, it is natural to call an attractor chaotic if it is bounded and all the 
trajectories starting from it are unstable in the sense that it does not converge to a fixed 
point, a limit cycle, or a limit set (and this instability is characterized by a positive 
Lyapunov exponent).  
 
A system is called chaotic if it possesses at least one chaotic attractor. That is, chaotic 
systems are characterized by local instability and global boundedness of the trajectories.  
 
Since local instability of a linear system implies unboundedness (infinite growth) of its 
solutions, chaotic system are necessarily nonlinear, i.e., described by a nonlinear 
mathematical model. Perhaps the most popular example of chaos is given by the Lorenz 
system 
 

( ) ,
,

.

x y x
y rx y xz
z bz xy

σ= −⎧
⎪

= − −⎨
⎪ = +⎩

 (1) 

 
Solutions of (1) for some parameter values look like irregular oscillations (see, e.g. 
Figure. 1 and Figure. 2 for the case of 10, 97, 8 / 3r bσ = = = ). 
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Figure 1: Chaotic trajectory ( )x t  of the Lorenz system and its spectrum. 
 

 
 

Figure 2: Chaotic attractor of the Lorenz system in the 3D space and its projection onto 
the plane x - y . 

 
Sometimes, instead of “chaotic attractor,” the term “strange attractor” is used, which 
was introduced by D. Ruelle and F. Takens in 1971 to mean that the attractor is a porous 
(fractal) set that cannot be represented as a piece of a smooth manifold and therefore has 
a non-integer dimension (see the discussion on fractal dimension in Analysis of chaotic 
systems).  
 
Another notion of chaos is inspired by the statistical approach to the study of dynamical 
systems. In statistical (ergodic) theory, a dynamical system is understood as a 
transformation of sets or measures rather than a transformation of points. Such an 
approach allows us to describe some integrated and typical properties of system 
trajectories, eliminating exceptional and atypical ones. The corresponding definition of 
chaotic attractor was introduced by Ya. Sinai in 1979. It emphasizes the mixing 
property of chaotic systems, which means, loosely speaking that any bounded set of 
initial conditions will be spread over the whole attractor as time goes. 
 
Coexistence of different definitions of chaos reflects the complexity of this scientific 
notion, encompassing a variety of mathematical and physical views of it. Theoretical 
studies are often based only on some properties and features of chaotic systems, without 
emphasizing on a specific and rigorous definition. 
 
Study of chaotic systems has been based on a number of concepts of nonlinear systems 
theory, introduced for qualitative and quantitative analysis: Lyapunov exponents, 
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Poincaré maps, delayed coordinates, fractal dimensions, entropies, etc. This active field 
of research is commonly called Chaos Theory (see Analysis of chaotic systems).  
 
An important property of chaotic trajectories is the recurrence: they return to any 
vicinity of any past value of the system trajectory. A recurrent motion necessarily 
returns to any vicinity of any of its previous piece at least once and, therefore, infinitely 
many times. Recurrence implies another important feature of chaos: chaotic attractor is 
the closure of all the unstable periodic trajectories (UPO) contained in it. 
  
Another feature of chaotic systems, related to sensitive dependence on initial conditions, 
is the high sensitivity with respect to the changes of their parameters or some input 
variables (controlling actions). It means that small changes in a controlling variable may 
produce large variations in system's behaviors. Such a phenomenon and its implications 
in physics were described in the seminal paper of 1990 by E. Ott, C. Grebogi and J. 
Yorke, which triggered an explosion of activities and enormous publications during the 
following decade.  
 
(see Analysis of chaotic systems) 
 
3. Methods of Chaos Control 
 
A typical goal for controlling a chaotic system is to transform its chaotic trajectory into 
a periodic one. In terms of control theory, this means stabilization of an unstable 
periodic orbit or unstable equilibrium. A specific feature of this problem is the 
possibility of achieving the goal by means of an arbitrarily small control action. Other 
control goals like synchronization (concordance or concurrent change of the states of 
two or more systems) and chaotization (purposeful generation of a chaotic motion by 
means of control) can also be achieved by small control in many cases. 
 
More subtle objectives can also be specified and achieved by control, for example, to 
modify a chaotic attractor of the free system in the sense of changing some of its 
characteristics (Lyapunov exponents, entropy, fractal dimension), or delay its 
occurrence, or change its locations, etc. 
 
3.1. Feedforward Control by Periodic Signal 
 
Methods of feedforward control (also called non-feedback or open-loop control) change 
the behavior of a nonlinear system by applying a properly chosen input function ( )u t  – 
external excitation – usually a periodic signal. Excitation can reflect influence of some 
physical actions, e.g. external force or field, or it can be some parameter perturbation 
(modulation). In these cases, the value ( )u t  depends only on time and does not depend 
on the current measurements of the system variables. Such an approach is attractive 
because of its simplicity: no measurements or executions are needed for state 
information. It is especially advantageous for ultra-fast processes at the molecular or 
atomic level, or open flow control, where no possibility of system variable online 
measurements exists. 
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The possibility of significant changes to system dynamics by periodic excitation has 
been known, perhaps, since the beginning of the 20th century: A. Stephenson 
discovered in 1908 that a high frequency excitation can stabilize the unstable 
equilibrium of a pendulum.  
 
Analysis of general nonlinear systems affected by high frequency excitation is 
commonly based on the Krylov-Bogoljubov averaging method. According to the 
averaging method, stability analysis of a periodically excited system is reduced to the 
analysis of a simplified averaged system. The method provides conditions guaranteeing 
approximate stabilization of a given equilibrium or a desired (target) trajectory.  
 
The possibility of transforming a periodic motion into a chaotic one, or vice versa, by 
means of periodic excitation of a medium level was demonstrated by V. Alexeev and A. 
Loskutov in 1985 for a fourth-order system describing dynamics of two interacting 
populations. K. Matsumoto and I. Tsuda demonstrated the possibility of suppressing 
chaos in a Belousov-Zhabotinsky reaction by adding a white noise disturbance in 1983.  
 
These results were based on computer simulations. In 1990, R. Lima and M. Pettini, and 
later R. Chácon, studied suppression of chaos in one degree-of-freedom nonlinear 
oscillators analytically, applying the Melnikov method. Since Melnikov method leads to 
intractable calculations for state dimensions greater than two, analytical results are 
known only for periodically excited systems with one degree of freedom. For higher-
dimensional cases, computer simulations are used instead. 
 
- 
- 
- 
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