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Mathematical Representation 
 
Thorough this article, the following notation has been adopted to differentiate among 
scalars, vectors, and matrices: 
 
x  is a scalar 
 
x  is a vector 
 
x  is a matrix 
 
Summary 
 
A framework for intelligent control using neural networks is presented. Neural networks 
make use of a universal approximation property that allows them to be used in feedback 
control of unknown systems without a requirement for linearity in the system 
parameters. 
 
This article shows that neural networks provide model-free learning controllers for a 
class of nonlinear systems, in the sense that not even a structural or parametrized model 
of the system dynamics is needed. Another remarkable issue in the use of neural 
networks is the reusability of the low-level controller, since the system dynamics are 
completely unknown to the controller. The same controller works even if the behavior 
or structure of the system changes. Several feedback control topologies and weight 
tuning that guarantee closed-loop stability and bounded weights are given. Applications 
to robot manipulator control, active vehicle suspension, and industrial system control 
are set out. 
 
1. Introduction 
 
Intelligent control has received a great deal of interest in the past years due to the desire 
to emulate the functioning of the human body, particularly the brain’s learning process 
and the execution of bodily actions. The closer that any designed system’s behavior 
conforms to human learning/adaptation capabilities the more efficient that system will 
become, and the less human operator intervention will be needed. Neural networks are 
among the structures used in this approach to achieving “intelligence” in systems. 
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Neural networks (NN) have achieved great success in classification, pattern recognition, 
and other open-loop applications in digital signal processing and elsewhere. There has 
been plenty of research into the use of neural networks for control applications, and they 
are considered ‘universal model-free controllers’ in the sense that a mathematical model 
of the controlled plant is not required. Neural networks try to mimic the functions of 
biological processes, in order to learn about their environment and account for it to 
improve overall performance. 
 
We must distinguish between two main classes of neural network for control 
applications: open-loop identification and closed-loop feedback control. The former 
class resembles signal processing and classification, so most of the techniques and 
algorithms appropriate to these fields will still apply. On the contrary, in the feedback 
control applications, the NN reside inside the control loop, which requires special care 
to ensure the tracking error and NN weights remain bounded in the closed-loop system. 
This article concentrates on the latter class. 
 
There is a considerable literature on NN for feedback control of unknown systems. 
However, it was not until the 1990s that repeatable design algorithms and stability 
proofs became available, thus guaranteeing performance. Most of the initial approaches 
required some off-learning phase (that is, training off-line) to tune the NN weights, 
using measurements of the system inputs and outputs, in order to guaranteed stability. 
This represented a problem for industrial and mechanical systems that usually required 
immediate control, besides the fact that “untrained” perturbation in the system was 
likely to affect handling performance and capability. Furthermore, in the early 
application stages of direct control back-propagation weight tuning was completely 
dependent on the unknown system, and/or satisfied its own differential equations, 
making them very difficult to compute.  
 
In this article we present a comprehensive approach to the design and analysis of neural 
network controllers. The control structures discussed are multiloop controllers with 
outer tracking proportional-derivative (PD) loops, containing NN in some of the loops. 
The algorithms presented are of repeatable design, and guarantee the system 
performance by including small tracking errors and bounded NN weights. It is shown 
that the NN controllers require additional structures as uncertainty about the controlled 
system itself increases. 
The NN controllers are adaptive learning systems but do not rely on the usual 
assumptions made in adaptive control theory, such as linearity in their parameters and 
availability of a known regression matrix. This is primarily due to the NN universal 
function approximation property. NN controllers may be called ‘nonparametric 
controllers’ in that they are not parametrized in terms of system parameters. When 
designed correctly, the NN controller does not call for assumptions about persistence of 
excitation or certainty equivalence. 
 
The article begins by discussing multilayer nonlinear and linear in networks of 
parameters. Tracking controllers for robot manipulators are presented for networks with 
tuning algorithms that guarantee closed-loop stability and for those with bounded 
weights. Some extensions are also discussed, including NN force control, actuator 
dynamics nonlinearity compensation, and output-feedback control. 
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2. Neural Network Structures and Properties 
 
Neural networks (NN) can be used in two classes of applications in system theory: 
signal processing/classification and control. There are two classes of control 
applications: open-loop identification and closed-loop feedback control. Identification 
applications resemble signal processing/classification, so the same open-loop algorithms 
may often be used. On the other hand, in closed-loop feedback applications the NN is 
inside the control loop, so special steps must be taken to ensure that the NN weights 
remain bounded during the control run. 
 
2.1. Static Feedforward Neural Networks 
 
A feedforward NN is shown in Figure 1.  
 

 
 

Figure 1. Two-layer feedforward neural network 
 
This NN has two layers of adjustable weights, and is here termed a two-layer net. The 
NN output y  is a vector with m  components that are determined in terms of the n  
components of the input vector x  by the formula 
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where )(⋅σ  are the activation functions and L  is the number of hidden-layer neurons. 
The first- to second-layer interconnection weights are denoted by jkv , and the second- 
to third-layer interconnection weights by ijw . The threshold offsets are denoted by 

jvθ , iwθ . 
 
Many different activation functions )(⋅σ  are in common use. In this work, it is required 
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that )(⋅σ  is sufficiently smooth that at least its first derivative exists: suitable choices 
are shown in Figure 2. 

 

 
 

Figure 2. Common neural network activation functions and derivatives 
 
By collecting all the NN weights jkv , ijw  into matrices of weights TV , TW , we can 
write the NN equation in terms of vectors as 
 

)( xVWy TTσ= . (2) 
 
The thresholds are included as the first columns of the weight matrices. Any tuning of 
V  and W  then includes tuning of the thresholds as well. To accomplish this, the vectors 
x  and )( xV Tσ  need to be augmented by placing a ‘1’ as their first element (e.g., 

[ ]Tnxxxx 211≡ ). In this equation, in order to represent Eq. (1) we have 
sufficient generality if )(⋅σ  is taken as diagonal function from Lℜ  to Lℜ : that is, 

{ })()( izdiagz σσ =  for a vector [ ] LT
Lzzzz ℜ∈= 21 . 

 
2.2. Universal Function Approximation Property 
 
Neural networks (NN) satisfy many important properties. A major concern for feedback 
control purposes is the universal function approximation property. Let )(xf  be a 
general smooth function from nℜ  to mℜ . From this it can be shown—as long as x  is 
restricted to a compact set nS ℜ∈ —that weights and thresholds exist, such that 
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εσ += )()( xVWxf TT  (3) 
 
for a number of hidden layer neurons L . This holds for a large class of activation 
functions. This equation indicates that a NN can approximate any smooth function on a 
compact set. The value ε  is called the NN functional approximation error, and 
generally decreases as the net size L  increases. In fact, for any choice of a positive 
number Nε  we can find a feedforward NN such that Nεε <  for all Sx∈ . This means 
that a NN can be selected to approximate )(xf  to any desired accuracy Nε . 
 
The ideal NN weights in matrices V ,W  that are needed to best approximate a given 
nonlinear function )(xf  are difficult to determine. In fact, they may not even be unique. 
However, all that must be known for control purposes is that some ideal approximate 
NN weights exist for a specified value for Nε . Then, an estimate of )(xf  can be given 
by 
 
 )ˆ(ˆ)(ˆ xVWxf

TT
σ=  (4) 

 
where Ŵ and V̂  are estimates of the ideal NN weights that are provided by certain on-
line weight-tuning algorithms, which will be detailed subsequently. 
 
The assumption that there exist ideal weights, such that the approximation property 
holds, resembles various similar assumptions in adaptive control, including Erzberger’s 
assumptions and parameter linearity (see Adaptive Control). The very important 
difference in the case of NN is that the approximation property always holds: in 
adaptive control such assumptions often do not hold in practice, and so they imply 
restrictions on the form of the systems that can be controlled. 
 
2.3. Weight-Tuning Algorithms 
 
In order for the NN to learn and adapt to its environment, the weights should be 
continuously updated on-line. Many types of NN weight-tuning algorithm are used, 
usually based on some sort of gradient algorithm. Tuning algorithms may be given 
either in continuous time or in discrete time, where the weights are updated only at 
discrete time points. Discrete-time tuning is useful in digital control applications of NNs. 
A common weight-tuning algorithm is the gradient algorithm based on the propagation 
error, where the NN is trained to match specified exemplar pairs ),( dd yx , with dx  the 
ideal NN input that yields the desired NN output dy . The discrete-time version of the 
backpropagation algorithm for the two-layer NN is given by 
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where k  is the discrete-time index and F , G  are positive, definite-design parameter 
matrices governing the speed of convergence of the algorithm. The hidden-layer output 
gradient or Jacobian may be explicitly computed: for the sigmoid activation functions, 
for instance, it is 
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where { }vdiag  denotes a diagonal matrix whose diagonal elements are the components 
of the vector v . The error kE  that is backpropagated is selected as the desired NN 
output minus the actual NN output kdk yyE −= . Backpropagation tuning is 
accomplished off-line and requires specified training data pairs ),( dd yx ; thus it 
amounts to a supervised training scheme. 
 
The continuous-time version of the backpropagation algorithm for the two-layer NN is 
given by 
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The Hebbian algorithm is a simplified NN weight-tuning scheme, a continuous-time 
version of which is 
 

TT
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( )TT xVxGV )ˆ(ˆ σ⋅=  

 
Thus, in Hebbian tuning, no Jacobian needs to be computed. Instead the weights in each 
layer are updated on the basis of the outer product of the input and output signals of that 
layer. 
 
2.4. Functional-Link Basis Neural Network 
 
The NN can be considered with the first layer of weights V  and thresholds fixed, and 
with only the second-layer weights W  tuned. 
 
Select IV =  so that the NN output is 
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or, in matrix form, 
 

)()( xWxy Tσ=  (10) 
 
Now, )(xσ  is not diagonal but is a general function from nℜ  to Lℜ , making it a 
functional-link neural net (FLNN). In this case, the NN approximation property does 
not generally hold. However, a one-layer NN can still approximate functions as long as 
the activation functions )(xσ  are selected as a basis. This makes the NN linear in the 
parameters: this case has been treated for the radial basis functions, using a projection 
algorithm for weight tuning and for discrete-time systems. It is proven that linearity in 
the unknown parameters has the so-called ‘best-approximation property’: for a given 
function f , there always exists a parameter that approximates f  better than all other 
possible choices. 
 
Following this, to ensure suitable NN approximation properties some conditions must 
be satisfied by the activation function )(xσ . 
 
Definition 1: Let S  be a compact, simply connected set of nℜ , and let LSx ℜ→:)(ϕ  
be integrable and bounded. Then )(xϕ  is said to provide a basis for )(SC m  if: 
 

• a constant function on S  can be expressed as (10) for finite L , and 
• the functional range of neural network (10) is dense in )(SC m  for countable L . 

 
It was shown by Barron that the neural network approximation error )(xε  for one-layer 
NN is fundamentally bounded below by a term of the order dn /2)/1( , where n  is the 
number of fixed basis functions and d  is the dimension of the input to the NN. This 
does not limit the tracking performance in our controller, because of the control system 
structure selected. 
 
It is not straightforward to pick a basis )(xϕ . CMAC, RBF, and other structured NN 
approaches allow one to choose a basis by partitioning the compact set S . This can be a 
tedious process, however. If one selects 
 

)()( xVWxy TTσ=  (11) 
 
with )1/(1)( xex ασ += , for example, as the sigmoid, then it can be shown that )( xV Tσ  is 
a basis if V  is selected randomly. Once selected, V  is fixed and only W  is tuned. Then, 
the only design parameter in constructing the one-layer NN is the number of hidden 
layer neurons hN . A larger hN  results in a smaller )(xε . 
 
2.5. Gaussian or Radial Basis Function Networks 
 
The selection of a suitable set of activation functions is considerably simplified in 
various kinds of structured nonlinear networks, including radial basis functions. A NN 
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activation function is given as 
 

pxex 2/)( 2
)( μσ −−=  (12) 

 
when x is a scalar with mean μ  and variance p. These are called Gaussian or radial 
basis functions (RBF). A RBF NN can also be written as Eq. (2), but this function has 
an advantage over the usual sigmoid NN in that the n-dimensional Gaussian is well 
understood from probability theory, Kalman filtering, and elsewhere, so that n-
dimensional RBFs are easy to conceptualize. 
 
The j-th activation function can be written as 
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with x , n

j ℜ∈μ . Let the vector of activation functions be defined as 

[ ]T
L xxxx )()()()( 21 σσσσ ≡ . If the covariance matrix is diagonal so that 

{ }jkj pdiagP = , then Eq. (13) becomes separable, and may be decomposed into its 
component parts as 
 

jkjkk

n

k
jkjkk pxn

k

px

j eex
/)(

2
1

1

/)(
2
1

2

1

2

)(
μμ

σ
−−

=

−−−

∏=
∑

= =  (14) 

 
where kx , jkμ  are the k-th components of x , jμ . Thus, the n-dimensional activation 
functions are the product of n scalar functions. This allows us to visualize the hidden-
layer neurons as having n-dimensional activation functions, as in Figure 1. 
 
It can be seen that Eq. (14) is of the form taken by the activation functions in Eq. (1), 
but with thresholds that are more general. The first-layer thresholds of the RBF NN are 
n-dimensional vectors corresponding to the mean values of the Gaussian functions, 
which serve to shift the functions in the nℜ  plane. The first-layer weights in TV  are 
scaling factors that served to scale the width of variance of the Gaussians. These are 
both usually selected in designing the RBF NN and left fixed; only the output-layer 
weights TW  are generally tuned. Therefore, the RBF NN is a special sort of FLNN 
shown in Eq. (10). 
 
Figure 3 shows separable Gaussians for the case 2ℜ∈x . In this figure, all the variances 

jkp  are identical, and the mean values jkμ  are chosen in a special way that spaces the 
activation functions at the node points of a 2D grid. To form an RBF NN that 
approximates functions over the region { }11,11 21 ≤<−≤<− xx , here we have selected 

2555 == xL  hidden-layer neurons, corresponding to five cells along 1x  and five along 
2x . Nine of these neurons have 2D Gaussian activation functions, while those along the 

boundary require the illustrated ‘one-sided’ activation functions. 
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Figure 3. Two-dimensional separable Gaussian functions for an RBF NN 
 
The importance of RBF NNs is that they show how to select the activation functions 
and the number of hidden-layer neurons for specific NN applications, including function 
approximation, while also providing insights on the information stored in the NN. 
 
- 
- 
- 
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control the unknown system appropriately.] 
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