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Summary 
 
This chapter gives a concise presentation of expert control on the basis of a generic 
architecture that involves the operator, the expert system, the control algorithm, 
auxiliary units (parameter estimator, state estimator, fault detector) and the plant under 
control.  
 
Particular aspects covered are knowledge representation, knowledge acquisition, 
reasoning in expert control, real-time expert systems, expert system-based computer-
aided control and anticipatory systems. Three case studies are briefly described to 
clarify many of the above concepts.   
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1. Introduction 
 
Expert control or, more generally, knowledge-based control is a generic type of control 
possessing features of higher level than traditional controls. These features are usually 
achieved by involving human operator expertise or knowledge in the control loops. 
Expert control belongs to the more general class of intelligent control that aims at 
increasing the autonomy of technological systems such as process control systems, 
autonomous vehicles, robotic systems and manufacturing systems. Expert control can be 
used for both model-based and model-free control procedures although it fits more to 
the latter case. 
 
Intelligent control has a hierarchical structure. At the lowest level, deterministic 
feedback control based on conventional control theory is employed for single linear 
plants. Kalman or other types of filters are used when the process stochastic noise and 
input disturbances are significant. Adaptive control techniques are used when the 
variations of plant parameters are large such that linear robust control theory is 
inappropriate. For still more complex plants, self-organizing or learning control may be 
necessary. At the highest level, plant complexity is so high and performance 
requirements so demanding, that intelligent control techniques (e.g. expert control) are 
necessary. The need to use intelligent autonomous control comes from the desire to 
have an increased level of autonomous decision making abilities in 
achieving/performing complex /sophisticated control tasks. 
 
The three fundamental hierarchical levels of intelligent control are: 
 

− Organization level (control executive): It performs upper management, learning 
and decision making functions (it issues commands to the managers and 
coordinates their actions), 

− Coordination level (control manager): Middle and lower management, learning, 
decision making and supervision algorithms. 

− Execution level: Decision and control algorithms in hardware and software. 
 
Expert control is actually designed so as to possess a set of fundamental features which 
include (but are not restricted to) the following: 
 

− ability to control a large repertory of systems (nonlinear, time varying, uncertain, 
etc) 

− ability to use in an intelligent way the available a priori knowledge (which may 
be minimal) 

− ability to work with qualitative specifications provided by the user (e.g. “small 
overshoot”, “fast response”) 

− ability to enhance (via learning) its knowledge and improve its performance as 
the process operates 

− ability to carry out fault detection/diagnosis procedures and accommodate faults 
(in the actuators and sensors) so as to assure an acceptable performance level 
(fault tolerance ability). 

− Ability to communicate and interact with the user/system operator 
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− Ability to store transparently the underlying control knowledge and control 
heuristics in a way that allows their easy examination, modification and 
extension. 

 
It is remarked that existing practical expert control systems have not necessarily all the 
above features, depending on the nature and particular goals of the plant under control.   
 
2. Expert Control System Architecture 
 
A generic architecture for expert control systems should include both the standard 
expert system’s components and the control system’s components in an integrated and 
cooperative way. In other words the expert system here should be part of a conventional 
feedback loop with a process, a controller, a parameter/state estimator, a fault detector/ 
isolator and a supervisor (Fig. 1). In actual practice very few systems exist that have 
embedded all the above components. 
 
Over the years much effort was devoted for solving efficiently the analysis and design 
problems of controllers, parameter estimators, state estimators, fault detectors / 
diagnosers and supervisors using model based techniques. These efforts, together with 
the fuzzy logic, neural network and genetic algorithm techniques, have shown a 
significant impact on the practice of automatic control. 
 
Our focus here will be on the issues of expert/knowledge-based control founded on the 
artificial intelligence methodologies. Thus we will start with the basis of expert control, 
i.e. the expert system component of Fig. 1. 
 

 
 

Figure 1: Generic architecture of expert control 
 
An expert is a person, who, because of education and expertise, is capable of doing 
things the rest of us cannot. By expertise it is meant the solid body of operative 
knowledge each expert has about the problems of his/her domain. Thus, naturally, 
experts are the ones to ask when it is desired to represent the expertise that makes their 
behavior possible. 
 
An expert (knowledge-based) system involves three main components: knowledge of 
facts, knowledge of relations between the facts, and a suitable technique for acquiring 
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and storing this information. An expert system is called to construct its solution 
selectively and efficiently from a space of alternatives. Since unavoidably the resources 
are limited, the expert system must search this space with as little unfruitful activity as 
possible. The expert’s knowledge helps to draw useful data early, suggests suitable 
paths to exploit them, and helps to avoid low payoff efforts by rejecting blind paths as 
early as possible. The construction of an expert system is the subject of knowledge 
engineering. The job of the knowledge engineer is to extract the knowledge (i.e. rules, 
procedures, strategies, etc) out of human experts, and to embed it into a knowledge 
base. More on the knowledge acquisition process will be provided in section. 
The architecture of an expert system is shown in Fig. 2. 
 

 
 

Figure 2: Expert system architecture 
 
The components of this architecture are: 
 

• Knowledge base (KB) 
• Data base (DB) 
• Inference engine 
• Explanation component (EC) 
• User interface (UI) 
• Work space (WS) 
• Knowledge acquisition (KA) component. 

 
The KB contains the available symbolic knowledge about the problem, i.e. facts and 
rules. The DB contains the numeric information about the problem, i.e. input data. The 
inference engine involves methods for applying the general knowledge of the problem, 
e.g. a mechanism to match the left hand sides of the rules in order to succeed the goals 
or subgoals (i.e. the rules’ actions). The explanation component serves to inform the 
user on how and why the conclusions are obtained. The user interface provides the 
means for the interaction of the user with the system. The WS is actually an area of 
memory for storing a description of the problem constructed from facts supplied by the 
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user of inferred from the KB. Finally the KA component helps to extract the required 
knowledge from the expert.  
 
A schematic view of the expert system building (construction) process is shown in Fig. 
3. 
 
The knowledge engineer extracts the knowledge from the expert and embeds it into the 
expert system tool used to construct the expert system in an interactive way that 
involves testing and tuning (refining) procedures. 
 
 

 
 

Figure 3: Expert System Building Process 
 
The main advantages of using an expert system (artificial expertise) instead of an expert 
(human expertise) in control are the following. 
 
 

Human Operator Expertise 
• Perishable 
• Difficult to transfer 
• Difficult to document 
• Unpredictable 
• Expensive 

 

Artificial Controller Expertise 
• Permanent 
• Easily transferable 
• Easy to document 
• Consistent 
• Economically affordable 

 
In many situations it is necessary or useful to keep a moderate human expertise inside 
the loop in order to fill up the holes and the imperfectness of the expert system. Clearly, 
the human experts have special features like: creativeness, adaptiveness, broad view, 
common sense and sensorial observation. It should also be remarked that symbolic 
inputs are inferior to sensorial observations since the latter starts from a global view that 
captures a priori mutual relations. The concept of common sense is difficult to describe 
exactly, but it is a kind of broad view of general knowledge about the system’s world, 
its mechanisms and its relations. Actually, commonsense implies the awareness of some 
knowledge and the lack of awareness of other knowledge. 
 
Regarding the control algorithm component in Fig. 1 it is noted that many different 
options for the same feedback control task may be used, for example PI, PID, PLC, self-
tuning control, state or output feedback control, etc. Also there exist algorithms for 
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generating perturbation signals to excite the process. The fault detection and diagnosis 
element serves to find faults that are local to the control loop whereby the expert 
controller belongs. This is different than the plant wide fault detection which needs 
separate specialized (model based or knowledge based) techniques. 
 
A dominant reason for employing expert control is to reduce the engineering effort 
needed for realizing and exerting feedback control. This is due to that an expert 
controller supports many of the functions that are traditionally performed by operators, 
process specialists and control engineers and technicians. These functions are either 
computer supported or fully automated. Therefore, an expert controller helps to have a 
system with a higher degree of automation than a traditional control system. Of course, 
the use of expert controller design should be based on both the static and dynamic 
features required to be possessed by the overall closed-loop system. Static input-output 
features include signal ranges and static input-output relations. If the experimental data 
give a precise curve we have a servo problem, otherwise (i.e. when no definite relation 
between inputs and outputs can be established) we have a regulation problem. For a 
servo problem the variations in the static gain of the system must also be determined, 
which provides a good indication of whether gain scheduling is needed. The static gain 
curve can also be employed for diagnostic purposes. 
 
The dynamic features include both crude (qualitative) and detailed (quantitative) 
features. Qualitative features are: stable / unstable, monotone / oscillatory, essential 
monotone, minimum phase, etc. These features can be determined by simple 
experimentation or by a properly trained operator or a neural network. The two principal 
techniques commonly applied are step response and frequency response. Quantitative 
features refer to both the amplitude and time characteristics. The amplitude can be 
described by mean, variance, maximum and minimum values. For a more detailed 
description the amplitude distribution is required. The time variations include: time 
constants, spectral distribution and cutoff frequencies. For a good assessment the 
disturbance levels below and above the bandwidth of the system (i.e. the time scale) 
must be known. In a PID controller the high-frequency measurement noise can be 
assessed by measuring the mean square value of the derivative part. Disturbances are 
key aspects of control systems design. The trade-off between rejection of load 
disturbances and measurement noise is a fundamental question, but no general methods 
exist (like Ziegler-Nichols method) to determine this trade-off. However, it helps a lot 
to know the origin of disturbances, i.e. if they are due to measurement noise, parameter 
variations, set-point changes or load variations. All the existing expert control systems 
in the process control and manufacturing industry employ proper static and dynamic 
design specifications.  
 
3. Knowledge Representation in Expert Control 
 
The way knowledge is represented, stored and extracted from the KB is a primary issue 
of expert systems and expert control. It affects the feasibility of the application, because 
no matter how nice an intelligent expert system / controller may be, it is useless if the 
time required to infer the answer is too long. This is particularly so in process and 
industrial / manufacturing control applications where the real-time aspect is a severe 
requirement. Before discussing the various knowledge representation schemes we 
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briefly outline the type of control knowledge.  
 
3.1. Control Knowledge  
 
Domain (control) knowledge is a basic issue in expert control. Automation of control 
system design and operation involves the tasks of design, commissioning, normal 
operation, and treatment of emergencies. Control system design involves issues like 
modeling, control performance, and control law selection. Commissioning involves: 
initialization, tuning, troubleshooting and loop auditing. Normal operation involves 
supervision, diagnosis and fault detection. 
 
 To perform the above tasks knowledge about process dynamics, actuators’ saturation, 
performance specifications and disturbances should be appropriately represented. It is 
essential to determine whether the performance is limited by the dynamics or other 
factors (e.g. the existence of oscillatory modes, the order of dynamics, time delays, etc). 
Time delays can be reduced by repositioning sensors and actuators. Dynamics can be 
improved by replacing sensors and actuators with faster ones. 
 
Modeling uncertainty is another limiting factor. It can be reduced by having a high loop 
gain at the frequencies where the uncertainty is large. However special attention is 
needed for maintaining a high loop gain, since we need to know reasonably well the 
phase around the cross-over frequency. Uncertainties in the time delay, which result in 
very large phase uncertainties at high frequencies provide a severe limitation on the 
achievable bandwidth. The treatment of all the above issues is facilitated by proper 
knowledge acquisition, representation, and processing. 
 
3.2. Rule-Based Systems 
 
First-generation expert systems use the knowledge representation in the form of IF-
THEN rules (the so-called production rules). Rules are also a natural way to describe 
much of the logic which is built around conventional controllers, but are not well suited 
for problems that have a strong sequential element, like the planning problem which 
needs the automatic generation of a sequence of actions that lead to a desired goal (e.g. 
bring an oscillatory system to a stable state, move a system from one operating 
condition to another in a smooth way, and so on). Planning has received much attention 
in AI research characterizing each action by preconditions and postconditions. Planning 
is outside the scope of this article, although many if the tasks in expert systems can be 
described as planning problems. For details on the planning problems the reader is 
referred to . 
 
The basic form of a production rule is  
 
 

Rule 
kR  

 
1 2IF ,  ,   ,  mc c c…  

 
1 2THEN ,  ,   ,  nh h h…  
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where  ( 1,  2,   ,  )ic i m= …  are predicates known as conditions (antecedents, premises) 
and the  ( 1,  2, ,  ) ih i n= … are referred to as consequents (conclusions, deductions, 
actions). The fundamental reasoning (syllogism) that applies here is: “IF A implies B 
and B implies C, then A implies C”. When all ( 1,  2,   ,  )ic i m= … are true, rule 

kR  is 
said to be triggered. The set of triggered rules is called the conflict set. A rule is selected 
from the conflict set using a conflict resolution strategy. A triggered rule is said to be 
fired when its consequences are performed. 
 
Some strategies for selecting the rule for firing from the conflict set are: 
 

• Rule ordering (Rule appearing earliest has highest priority.) 
• Data ordering (Rule with highest priority data-condition has highest priority.) 
• Size ordering (Rule with longest list of constraining conditions has highest 

priority.) 
• Context limiting (Activate or deactivate groups of rules at any time to reduce the 

occurrence of conflict.) 
• Specificity ordering (Arrange rules whose conditions are a superset of another 

rule.) 
 
The conflict resolution strategy is selected ad hoc. Most popular are specificity-ordering 
and context-limiting strategies. 
 
The control (or interpretation) mechanism used by synthesis systems is: 
 

1. Find rules whose IF parts are triggered, and select a rule using a certain conflict 
resolution strategy. 

2. Fire the rule (i.e., do what the rule’s THEN part says). 
 
In analysis systems, the antecedents of rules can be either observed or derived facts, and 
the consequents are new facts that are deduced. The above mechanism is known as a 
forward-chaining inference mechanism. In analysis systems the control mechanism can 
be either of the forward or backward chaining type. In the backward-chaining 
mechanism, a particular hypothesis is selected, and the rules are searched to see if the 
hypothesis is a consequent. If yes, the antecedents of the rule constitute the next set of 
hypotheses. The process is continued until some hypothesis is not true or all hypotheses 
are true based on the data. Forward and backward inference chaining resemble the 
bottom-up and top-down control in general computer algorithms (compilers). 
 
Rule-based systems have many advantages. For example: 
 

• They provide a homogenous representation of knowledge. 
• They allow incremental growth of knowledge through addition of new rules. 
• They allow unplanned but useful interactions. 

 
Rule-based systems can be efficiently implemented using various programming 
languages such as Pascal, C++, Lisp, or Prolog or expert system tools (shells) which 
possess built-in inference mechanisms (including mechanisms for fuzzy reasoning). 
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