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Genetic algorithms (GAs) are global, parallel, stochastic search methods, founded on 
Darwinian evolutionary principles. Many variations exist, including genetic 
programming and multiobjective algorithms. During the 1990s GAs have been applied 
in a variety of areas, with varying degrees of success within each. A significant 
contribution has been made within control systems engineering. GAs exhibit 
considerable robustness in problem domains that are not conducive to formal, rigorous, 
classical analysis. They are not limited by typical control problem attributes such as ill-
behaved objective functions, the existence of constraints, and variations in the nature of 
control variables. Genetic algorithm software tools are available, but there is no 
‘industry standard’. The computational load associated with the application of the 
genetic algorithm has proved to be the chief impediment to real-time application of the 
technique. Hence, the majority of applications that use GAs are, by nature, off-line. GAs 
have been used to optimize both structure and parameter values for both controllers and 
plant models. They have also been applied to fault diagnosis, stability analysis, robot 
path-planning and combinatorial problems (such as scheduling and bin-packing). 
Hybrid approaches have proved popular, with GAs being integrated in fuzzy logic and 
neural computing schemes. The GA has been used as the population-based engine for 
multiobjective optimizers. Multiple, Pareto-optimal, solutions can be represented 
simultaneously. In such schemes, a decision-maker can lead the direction of future 
search. Interesting future developments are anticipated in on-line applications and 
multiobjective search and decision-making. 
 
1. Introduction 
 
The genetic algorithm (GA) has arisen from a desire to model the biological processes 
of natural selection and population genetics, with the original aim of designing 
autonomous learning and decision-making systems. Since its introduction, and 
subsequent popularization, the GA has been frequently utilized as an alternative 
optimization tool to conventional methods. The correctness of the GA as an abstraction 
of natural evolution has been challenged but this issue should not be of undue concern 
to the engineer, who is using the GA for its robust search and optimization properties. 
 
Several analogous algorithms have been proposed in the literature, such as evolution 
strategies (ES) and evolutionary programming (EP). These, together with GAs, have 
been classified under the umbrella group of evolutionary algorithms (EAs). 
 
This article describes how the genetic algorithm methodology can be applied to 
problems in control systems engineering.  The suitability of the GA towards various 
types of problem is discussed, and methods for incorporating the characteristics of 
control problems, such as constraints on actuator performance, are outlined. 
 
The application of GAs to control can broadly be classified into two distinct areas: off-
line design and on-line optimization. Off-line applications have proved to be the most 
popular and successful. On-line applications tend to be quite rare because of the 
difficulties associated with using a GA in real-time and directly influencing the 
operation of the system. GAs have been applied to controller design and to system 
identification. In each case, either the parameters or the structure can be optimized, or – 
potentially – both. Other applications include fault diagnosis, stability analysis, sensor-
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actuator placement, and other combinatorial problems. This article considers examples 
from the literature for each class of problem. 
 
The article concludes by offering future perspectives on the direction of EA research, 
with particular attention to issues of concern to the control engineer. 
 
2. What are Genetic Algorithms? 
 
2.1. Overview 
 
Genetic algorithms (GAs) are global, parallel, search and optimization methods, 
founded on Darwinian principles. They work with a population of potential solutions to 
a problem. Each individual within the population represents a particular solution to the 
problem, generally expressed in some form of genetic code. The population is evolved, 
over generations, to produce better solutions to the problem. A schematic of the 
algorithm is shown in Figure 1. 
 

 
 

Figure 1. Schematic of a standard genetic algorithm 
 
Each individual within the population is assigned a fitness value, which expresses how 
good the solution is at solving the problem. The fitness value probabilistically 
determines how successful the individual will be at propagating its genes (its code) to 
subsequent generations. Better solutions are assigned higher values of fitness than worse 
performing solutions. 
 
Evolution is performed using a set of stochastic genetic operators, which manipulate the 
genetic code. Most genetic algorithms include operators that select individuals for 
reproduction, produce new individuals based on those selected, and determine the 
composition of the population at the subsequent generation. Crossover and mutation are 
two well-known operators. 
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Figure 2. Single-point crossover 
 
The crossover operator involves the exchange of genetic material between 
chromosomes (parents), in order to create new chromosomes (offspring). Various forms 
of this operator have been developed. The simplest form, single-point crossover, is 
illustrated in Figure 2. This operator selects two parents, chooses a random position in 
the genetic coding, and exchanges genetic information to the right of this point, thus 
creating two new offspring. 
 

 
 

Figure 3. Binary mutation operator 
The mutation operator, in its simplest form, makes small, random, changes to a 
chromosome. For a binary encoding, this involves swapping gene 1 for gene 0 with 
small probability (typically around one percent) for each bit in the chromosome, as 
shown in Figure 3. 
 
Once the new generation has been constructed, the processes that result in the 
subsequent generation of the population are begun once more. 
 
The genetic algorithm explores and exploits the search space to find good solutions to 
the problem. It is possible for a GA to support several dissimilar, but equally good, 
solutions to a problem, due to its use of a population. 
 
Despite the simple concepts involved, the development and analysis of genetic 
algorithms is quite complicated. Many variations have been proposed since the first GA 
was introduced. Rigorous mathematical analysis of the GA is difficult and is still 
incomplete. 
 
Genetic algorithms are robust tools, able to cope with discontinuities and noise in the 
problem landscape. Inclusion of domain-specific heuristics is not a pre-requisite, 
although it may improve the performance of a GA. They have proved useful at tackling 
problems that cannot be solved using conventional means. 
 
2.2. Landscapes 
 
The genetic algorithm seeks to maximize the mean fitness of its population, through the 
iterative application of the genetic operators previously described. The fitness value of a 
solution in the GA domain corresponds to a cost value in the problem domain. An 
explicit mapping is made between the two domains. ‘Cost’ is a term commonly 
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associated with traditional optimization problems. It represents a measure of 
performance: namely, the lower the cost, the better the performance. Optimizers seek to 
minimize cost. Hence, it is evident that, by maximizing fitness, the GA is effectively 
minimizing cost. Raw performance measures must be translated to a cost value. This 
process is usually straightforward for single objective problems, but becomes more 
complicated in the multiobjective case. 
 
Every possible decision vector has an associated cost value and fitness value. The 
enumeration of all such vectors leads to the cost landscape and fitness landscape for the 
problem. For a problem with two decision variables, the cost and fitness landscapes will 
each be three-dimensional. An example is given in Figure 4. In general, if a problem has 
n decision variables (is n-dimensional), then the corresponding landscapes will be n+1 
dimensional. The nature of a cost landscape depends on the chosen mapping from the 
vector of raw performance measure to the scalar cost value. The nature of the scalar 
fitness value subsequently depends on the translation from cost to fitness. 
 

 
 

Figure 4. A multimodal cost landscape 
 
2.3. Diversity 
 
Many variations on the standard genetic algorithm, as presented by Goldberg in 1989, 
can be found in the literature. Modifications have been motivated by a desire to improve 
the performance of the GA, and to adapt it to particular problem domains. It may be 
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more helpful or appropriate to regard evolutionary computing as a general problem-
solving methodology, rather than a specific parameter-less tool. 
 
Virtually every aspect of the GA has been exposed to experimentation. As a note of 
caution, the results of such changes are often inconclusive and are frequently based on 
limited empirical testing. A very brief summary of key developments is presented 
below: 
 

• Population – The size of the population has been of standard concern to both 
theorists and implementers. A population of between twenty and one hundred 
chromosomes is normally sufficient for most applications. The encoding of 
potential solutions to form chromosomes has also been the subject of intense 
research. Binary, or its Gray variant, encoding is the traditional approach, but 
direct floating-point representations of design parameters are becoming 
increasingly popular. 

 
• Fitness assignment – Techniques for the conversion of the raw performance of 

a potential solution to a GA fitness value have also received much attention. 
Fitness is often taken as absolute, prior to normalization using the population 
average but, alternatively, ranking techniques may be used. The main aims are to 
prevent premature convergence (early in the search), and to prevent directionless 
search late in the search. Ranking is, arguably, the most effective method of 
achieving this. 

 
• Selection – The standard roulette wheel selection method is known to produce 

biased results, leading to a phenomenon known as genetic drift. Two central 
aims in the development of alternatives are to eliminate statistical bias and to 
achieve potential parallelism. Other selection methods have been proposed, such 
as tournaments between two individuals (which achieves good parallelism), and 
stochastic universal sampling (which is unbiased). Note that a trade-off has been 
shown to exist between the two aims cited above. 

 
• Genetic manipulation – Genetic operators have been subject to intensive 

discussion, over both the composition and purpose of the various operators. 
Some researchers have abandoned recombination, whilst others regard the effect 
of mutation as minimal. Essentially, recombination tends to direct the search to 
superior areas of the search space, whilst mutation acts to explore new areas of 
the search space and to ensure that genetic material cannot be irretrievably lost. 
Choice of genetic operators must be made together with choice of 
representation.  

 
• Iteration – GAs evolve a population over a number of generations. The exact 

number depends on the speed with which convergence can be achieved, and is 
dependent on the interplay between the GA construction and the type of problem 
under consideration. The make-up of each new generation must be chosen. 
Typically, this will include offspring produced as a result of genetic operators 
acting on old individuals, some remnants of the past population, and possibly a 
few randomly generated individuals (see Figure 5). The exact proportion of each 
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tends to vary from implementation to implementation, but offspring usually 
dominate the new population. The ratio of offspring to population size is termed 
the generational gap. It may be a static value, or may vary dynamically during 
the course of a run. Elitism is the term given to describe the deliberate 
introduction of good past individuals into the new population. 

 

 
 

Figure 5. Typical composition of the new generation 
• New operators – Various new operators have been introduced to address 

problems discovered in application. For example, fitness sharing can be used to 
encourage niching behavior (sub-population formation at different, 
comparatively optimal, landscape peaks). Mating restriction can be applied in 
cases where crossover between largely different solutions is unlikely to create 
good offspring (poor offspring are commonly described as lethals). 

 
A particular area of interest is the endeavor to incorporate further parallelism within the 
GA methodology in order to improve the efficiency of the algorithm. Three main 
categories of parallel GA (PGA) can be defined, namely global, migration, and 
diffusion algorithms. Global PGAs treat the entire population as a single breeding unit 
and aim to exploit the inherent parallelism of the algorithm. Farmer-worker systems are 
a typical implementation, in which the workers carry out performance evaluations, or 
conduct genetic operations. In a migration-based PGA, the population is distributed 
amongst semi-isolated groups. From time to time, migration of individuals within the 
groups occurs. Diffusion PGAs are based on a local neighborhood selection mechanism. 
The population is treated as a single, continuous, structure. Breeding is restricted to 
adjacent individuals. This type of scheme tends to give rise to clusters of individuals of 
similar genetic material and fitness, known as ‘virtual islands’. Overviews and 
comparisons of parallel genetic algorithms are available in the literature. 
 
GAs have also been utilized as a component of hybrid problem-solving tools, including 
elements such as hill-climbing, simulated annealing, neural networks, Bayesian belief 
networks, and fuzzy logic. 
 
Two key developments that have arisen from the GA are genetic programming (GP) and 
multiobjective evolutionary algorithms (MOEAs). General introductions are provided in 
the following subsections. 
 
2.3.1. Genetic Programming 
 
Genetic programming represents a major variation on the GA. It was developed in the 
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early 1990s, with the original purpose of generating and evaluating entire computer 
programs. The algorithm fundamentally resembles a GA but application of the operators 
requires special care. GP evaluates and manipulates variable length structures, in 
contrast to the generally fixed length chromosomes of a GA. The structures are 
composed of functions and terminals (potential inputs) that are defined in a library, prior 
to the execution of the GP. The maximum depth of any structure is, usually, also pre-
defined. 
 
GP uses a parse tree structure that is very similar to the Lisp programming language. 
However, the GP approach admits any problem for which the solution can be 
represented as a structure. Applications have involved manipulation of structures such 
as neural networks, system block diagrams, circuits, and equations. A single-point 
crossover operator for a block diagram representation is shown in Figure 6. A simple 
mutation operator is illustrated in Figure 7. This operator swaps, with low probability, a 
block within a particular solution for one from the library of possible blocks. GP 
embodies an entire field of research in its own right. Much literature on the subject is 
available, including synopses of trends and applications. 
 

 
 

Figure 6. Single-point crossover for GP using block diagrams 
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Figure 7. Mutation for GP using block diagrams 
 
2.3.2. Multiobjective Evolutionary Algorithms 
 
Real-world problems usually involve the simultaneous consideration of multiple 
performance criteria. These objectives are often non-commensurable and are often in 
conflict with one another. Trade-offs exist between some objectives, where 
advancement in one objective will cause deterioration in another. It is very rare for 
problems to have a single solution; rather, a family of non-dominated solutions will 
exist. These Pareto-optimal (PO) solutions are those for which no other solution can be 
found which improves on a particular objective without detriment to one or more other 
objectives. The concept of Pareto optimality is illustrated in Figure 8. 

 
 

Figure 8. Pareto optimality 
 
Evolutionary algorithms are a suitable technique for multiobjective optimization. Due to 
their population-based nature, they are capable of supporting several different solutions 
simultaneously. The robustness of the GA in the face of ill-behaved problem landscapes 
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increases the value of their utility. Research into multiobjective evolutionary algorithms 
is still in its infancy, and is likely to prove a highly fruitful line of investigation in the 
coming years. One of the first approaches to utilize the concept of Pareto optimality was 
Fonseca and Fleming’s multiobjective genetic algorithm (MOGA), which tends to be 
the favored approach for control engineers. Several excellent surveys of MOEA 
(multiobjective evolutionary algorithm) development are available; MOGA is currently 
regarded as a “classic” MOEA with relatively few opportunities for improvement. 
 
In the past, multiobjective problems have been cast as, effectively, single objective 
problems by constructing a utility function describing the relative importance of each 
objective. For example, in linear quadratic regulator design, the competing objectives of 
error and control size have in the past been combined as a weighted-sum of quadratic 
measures. The cost function is defined prior to the optimization procedure.  
 
This requires in-depth information concerning the various trade-offs and valuation of 
each individual. This data is not commonly fully available in practice. Even then, such a 
procedure returns only a single solution (one point on the trade-off surface) per 
optimizer run. While multiple runs can be made with different settings for the weights, 
there is no guarantee that a uniform spread of objective weightings will provide a good 
spread of solutions. By contrast, evolutionary algorithms, due to their population-based 
nature, are capable of supporting several different solutions simultaneously.  
 
Thus, in a single optimizer run, the decision-maker is provided with an indication of the 
trade-offs within the problem. Furthermore, the weighted-sum approach is unable to 
identify non-convex parts of the trade-off surface, potentially missing important areas 
for compromise. By contrast, the GA selection operator can be used to identify degrees 
of Pareto optimality, thus enabling objectives to be handled individually. Hence, the 
requirement for a forced combination of objectives and the need for a priori information 
are both avoided. Indeed, this kind of search can help to identify the existence and 
nature of specific trade-offs. 
 
The central theme of MOEA research to date has been the search for a problem’s 
Pareto-front (the set of non-dominated solutions). This set can be quite large and, 
hence, preference information may usefully be incorporated in order to direct the search 
to useful parts of the trade-off surface. Incorporation of designer preferences within a 
MOEA-based tool is a crucial area for further research. 
 
MOEAs can be applied to a wide range of design problems, encompassing many 
different fields. For example, a MOGA has been applied to the optimization of 
radiotherapy treatment planning, in which the objectives are to deliver a high dose to the 
target area, whilst sparing the organs at risk, and minimizing the dose to other healthy 
tissue.  
 
They have also been applied to engineering design problems such as supersonic wing-
shape optimization and automotive engine design. Control-related applications are 
described in Section 4, many of which extend design capabilities of GA search methods 
based on single objectives. 
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