
UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Discrete Event Systems - Christos G. Cassandras

©Encyclopedia of Life Support Systems (EOLSS)

DISCRETE EVENT SYSTEMS

Christos G. Cassandras
Dept. of Manufacturing Engineering, 15 St. Mary’s St., Boston University, Brookline,
MA 02446, USA

Keywords: Time-driven System, Event-driven System, Language, Automaton,
Supervisory Control, Sample Path Analysis, Petri Net, Dioid Algebra, Simulation.

Contents

1. Introduction
2. Event-driven and Time-driven Systems
3. Abstraction Levels in the Study of Discrete Event Systems
4. Modeling Overview
4.1. Automata
4.1.1. Queuing Systems
4.2. Petri Nets
4.3. Dioid Algebras
5. Control and Optimization of Discrete Event Systems.
Glossary
Bibliography
Biographical Sketch

Summary

Discrete Event Systems (DES) are characterized by the occurrence of discrete events
asynchronously over time which are responsible for driving all dynamics. Such
systems are ubiquitous in modern technological environments, ranging from
communication networks and manufacturing to transportation and logistics. This class
of event-driven dynamic systems is first compared to traditional time-driven systems
described by differential (or difference) equations. We subsequently overview some of
the major modeling frameworks for DES, based on automata, Petri nets, and dioid
algebras. The use of these models is illustrated through queuing systems, a common
class of DES.

1. Introduction

The term “discrete event system” was introduced in the early 1980s to identify an
increasingly important class of dynamic systems in terms of their most critical feature:
the fact that their behavior is governed by discrete events occurring asynchronously
over time and solely responsible for generating state transitions. In between event
occurrences, the state of such systems is unaffected. Examples of such behavior
abound in technological environments such as computer and communication networks,
automated manufacturing systems, air traffic control systems, C3I (Command, Control,
Communication, and Information) systems, advanced monitoring and control systems
in automobiles or large buildings, intelligent transportation systems, distributed
software systems, and so forth. The operation of such environments is largely

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Discrete Event Systems - Christos G. Cassandras

©Encyclopedia of Life Support Systems (EOLSS)

regulated by human-made rules for initiating or terminating activities and scheduling
the use of resources through controlled events, such as hitting a keyboard key, turning
a piece of equipment “on”, or sending a message packet. In addition, there are
numerous uncontrolled randomly occurring events, such as a spontaneous equipment
failure or a packet loss, which may or may not be observable through sensors.

We shall henceforth use the acronym DES for “Discrete Event System”, but must
point out that the acronym DEDS, for “Discrete Event Dynamic System”, is also
commonly used to emphasize that it is the dynamics of such systems that render them
particularly interesting.

The conceptual and practical challenges in the development of the DES field may be
summarized as follows

1. The types of variables involved in the description of a DES are both continuous
and discrete, sometimes purely symbolic, i.e., non-numeric (as in describing
the state of a piece of equipment as “on” or “off”). This renders traditional
mathematical models based on differential (or difference) equations
inadequate, and methods relying on the power of calculus are, consequently, of
limited use. New modeling frameworks, analysis techniques, and control
procedures are required to suit the structure of a DES.

2. Because of the asynchronous nature of events that cause state transitions in

DES, it is neither natural nor efficient to use time as a synchronizing element
driving the system dynamics (details on this issue are provided in Section 2). It
is for this reason that DES are often referred to as event-driven, to contrast
them to classical time-driven systems based on the laws of physics; in the
latter, as time evolves state variables such as position, velocity, temperature,
pressure, current, voltage, etc. also continuously evolve. In order to capture
event-driven state dynamics, however, new mathematical models are
necessary.

3. Uncertainties are inherent in the technological environments where DES are

encountered. Therefore, the mathematical models used for DES and all
associated methods for analysis and control must incorporate this element of
uncertainty, sometimes by explicitly modeling nondeterministic behavior and
often through the inclusion of appropriate stochastic model components.

4. Complexity is also inherent in DES of practical interest, usually manifesting

itself in the form of combinatorially explosive state spaces. Purely analytical
methods for DES design, analysis, and control have proved to be limited. A
large part of the progress made in this field has relied on the development of
new paradigms characterized by a combination of mathematical techniques and
effective processing of experimental data.

The remainder of this chapter is organized as follows. In Section 2, we contrast time-
driven and event-driven systems as a means of highlighting the characteristics of DES
that motivate the development of the main modeling frameworks and methodologies

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Discrete Event Systems - Christos G. Cassandras

©Encyclopedia of Life Support Systems (EOLSS)

for design and control of such systems. In Section 3, we describe the different levels of
abstraction used for modeling DES, depending on the objectives of the analysis and
the problems to be addressed. This will also help to understand the nature of the
subsequent three chapters that focus on the supervisory control framework and on
methodologies based on sample path analysis. Finally, in Section 4 we provide an
overview of the main modeling approaches for DES. Without burdening the reader
with excessive technical details, we compare different models for a class of DES that
constitutes a basic building block in many applications.

2. Event-Driven and Time-Driven Systems

As previously mentioned, today’s technological and increasingly computer-dependent
world includes numerous examples of dynamic systems with the following two
features. First, many of the quantities we deal with are “discrete”, typically involving
counting integer numbers (how many parts are in an inventory, how many planes are
in a runway, how many telephone calls are active). Second, what drives many of the
processes we use and depend on is a variety of instantaneous “events” such as the
pushing of a button, hitting a keyboard key, or a traffic light turning green. In this
section, we will explain how these features amount to fundamental differences
between traditional dynamic systems modeled through differential (or difference)
equations and the new class of DES.

Let us begin with the concept of “event”. We do not attempt to formally define it,
since it is a primitive concept with a good intuitive basis. We only wish to emphasize
that an event should be thought of as occurring instantaneously and causing transitions
from one system state value to another. An event may be identified with a specific
action taken (e.g., somebody presses a button). It may be viewed as a spontaneous
occurrence dictated by nature (e.g., a computer goes down for whatever reason too
complicated to figure out) or it may be the result of several conditions which are
suddenly all met (e.g., the fluid level in a tank exceeds a given value). For the purpose
of developing a model for a DES, we will use the symbol e to denote an event. When
considering a system affected by different types of events, we will assume we can
define an event set E whose elements are all these events. Clearly, E is a discrete set.

Let us next concentrate on the nature of the state space of a system. In continuous-state
systems the state generally changes as time changes. This is particularly evident in
discrete-time models: the “clock” is what drives a typical sample path. With every
“clock tick” the state is expected to change, since continuous state variables
continuously change with time. It is because of this property that we refer to such
systems as time-driven. In this case, time is a natural independent variable which
appears as the argument of all input, state, and output functions involved in modeling a
system.

In DES, at least some of the state variables are discrete and their values change only at
certain points in time through instantaneous transitions which we associate with
“events”. What is important is to specify the timing mechanism based on which events
take place. Let us assume there exists a clock through which we will measure time,
and consider two possibilities: (i) At every clock tick an event e is selected from the

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Discrete Event Systems - Christos G. Cassandras

©Encyclopedia of Life Support Systems (EOLSS)

event set E (if no event takes place, we can think of a “null event” as being a member
of E , whose property is that it causes no state change), and (ii) At various time
instants (not necessarily known in advance and not necessarily coinciding with clock
ticks), some event e “announces” that it is occurring. There is a fundamental
difference between (i) and (ii) above. In (i), state transitions are synchronized by the
clock: there is a clock tick, an event (or no event) is selected, the state changes, and the
process repeats. Thus, the clock alone is responsible for any possible state transition.
In (ii), every event e E∈ defines a distinct process through which the time instants
when e occurs are determined. State transitions are the result of combining these
asynchronous concurrent event processes. Moreover, these processes need not be
independent of each other. The distinction between (i) and (ii) gives rise to the terms
time-driven and event-driven systems respectively. Continuous-state systems are, by
their nature, time-driven. However, in discrete-state systems this depends on whether
state transitions are synchronized by a clock or occur asynchronously as in scheme (ii)
above. Clearly, event-driven systems are more complicated to model and analyze,
since there are several asynchronous event-timing mechanisms to be specified as part
of our understanding of the system.

In view of this discussion, let us now turn our attention to mathematical models one
can use for time-driven and event-driven systems. In the former case, the field of
systems and control has based much of its success on the use of well-known
differential-equation-based models, such as

0 0, , ,t t t t t= =x f x u x x() (() ()) () , (1)

, ,t t t t=y g x u() (() ()) , (2)

where (1) is a (vector) state equation with initial conditions specified, and (2) is a
(vector) output equation. As is common in system theory, tx() denotes the state of the
system, ()ty is the output, and tu() represents the input, often associated with
controllable variables used to manipulate the state so as to attain a desired output. In
order to use this type of model, the two key properties that the system must satisfy are:
(i) it has a continuous state space, and (ii) the state transition mechanism is time-
driven. The first property allows us to define the state by means of continuous
variables, which can take on any real (or complex) value. It is because of this reason
that this class of systems is often referred to as Continuous Variable Dynamic Systems
(CVDS). Common physical quantities such as position, velocity, acceleration,
temperature, pressure, flow, etc. fall in this category. Since we can naturally define
time derivatives for these continuous variables, differential equation models like (1)
can be used.

The second property points to the fact that the state generally changes as time changes.
As a result, the time variable t (or some integer 0,1,2,k = … in discrete time) is a
natural independent variable for modeling such systems.

In contrast to a CVDS, in a DES the state space is discrete (or at least includes several
discrete variables) and the state transition mechanism is event-driven. From a

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Discrete Event Systems - Christos G. Cassandras

©Encyclopedia of Life Support Systems (EOLSS)

modeling point of view, the latter property has the following implication. If we can
identify a set of “events” any one of which can cause a state transition, then time no
longer serves the purpose of driving such a system and may no longer be an
appropriate independent variable.

Figure 1: Comparison of time-driven and event-driven sample paths

These two characteristics are the ones used in defining a DES as a discrete-state,
event-driven system, that is, we view a DES as one whose state evolution depends
entirely on the occurrence of asynchronous discrete events over time. In fact,
comparing state trajectories (sample paths) of CVDS and DES is useful in
understanding the differences between the two and setting the stage for DES modeling
frameworks. Thus, comparing typical sample paths from each of these system classes,
as in Fig. 1, we observe the following:

• For the time-driven CVDS shown, the state space X is the set of real numbers
R , and x t() can take any value from this set. The function ()x t is the solution
of a differential equation of the general form () ((), (),)x t f x t u t t= , where u t() is
the input.

• For the event-driven DES, the state space is some discrete

set 1 2 3 4, , ,X s s s s= { } . The sample path can only jump from one state to another
whenever an event occurs. Note that an event may take place, but not cause a
state transition, as in the case of 4e . There is no immediately obvious analog
to () ((), (),)x t f x t u t t= , i.e., no mechanism to specify how events might
interact over time or how their time of occurrence might be determined. Thus,

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Discrete Event Systems - Christos G. Cassandras

©Encyclopedia of Life Support Systems (EOLSS)

a large part of the early developments in the DES field has been devoted to the
specification of an appropriate mathematical model containing the same
expressive power as (1)-(2).

We should point out that discrete event systems should not be confused with discrete
time systems. The class of discrete time systems contains both CVDS and DES. In
other words, a DES may be modeled in continuous or in discrete time, just like a
CVDS can.

3. Abstraction Levels in the Study of Discrete Event Systems

Let us return to the DES sample path shown in Fig.1. Instead of plotting the piecewise
constant function ()x t as shown, it is often convenient to simply write the timed
sequence of events

1 1 2 2 3 3 4 4 5 5(,), (,), (,), (,), (,)e t e t e t e t e t , (3)

which contains the same information as the sample path depicted in Fig. 1. The first
event is 1e and it occurs at time 1t t= ; the second event is 2e and it occurs at time

2t t= , and so forth. When this notation is used, it is implicitly assumed that the initial
state of the system, 2s in this case, is known and that the system is “deterministic” in
the sense that the next state after the occurrence of an event is unique. Thus, from the
sequence of events in (3), we can recover the state of the system at any point in time
and reconstruct the DES sample path in Fig. 1.

Consider the set of all possible timed sequences of events that a given system can ever
execute. We call this set the timed language model of the system. The word
“language” comes from the fact that we can think of the event E as an “alphabet” and
of (finite) sequences of events as “words”. We can further refine our model of the
system if some statistical information is available about the set of sample paths of the
system. Let us assume that probability distribution functions are available about the
“lifetime” of each event type e E∈ , that is, the elapsed time between successive
occurrences of this particular e . We call a stochastic timed language a timed language
together with associated probability distribution functions for the events. The
stochastic timed language is then a model of the system that lists all possible sample
paths together with relevant statistical information about them.

Stochastic timed language modeling is the most detailed in the sense that it contains
event information in the form of event occurrences and their orderings, information
about the exact times at which the events occur (and not only their relative ordering),
and statistical information about successive occurrences of events. If we omit the
statistical information, then the corresponding timed language enumerates all the
possible sample paths of the DES, with timing information. Finally, if we delete the
timing information from a timed language we obtain an untimed language, or simply
language, which is the set of all possible orderings of events that could happen in the
given system. Deleting the timing information from a timed language means deleting
the time of occurrence of each event in each timed sequence in the timed language.

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Discrete Event Systems - Christos G. Cassandras

©Encyclopedia of Life Support Systems (EOLSS)

For example, the untimed sequence corresponding to the timed sequence of events in
(3) is

{ }1 2 3 4 5, , , ,e e e e e .

Languages, timed languages, and stochastic timed languages represent different levels
of abstraction at which DES are modeled and studied: untimed (or logical), timed, and
stochastic. The choice of the appropriate level of abstraction clearly depends on the
objectives of the analysis. In many instances, we are interested in the “logical
behavior” of the system, that is, in ensuring that a precise ordering of events takes
place which satisfies a given set of specifications (e.g., first-come first-served in a job
processing system). Or we may be interested in finding if a particular state (or set of
states) of the system can be reached or not. In this context, the actual timing of events
is not required, and it is sufficient to model only the untimed behavior of the system,
that is, consider the language model of the system. Supervisory control is the term
established for describing the systematic means (i.e., enabling or disabling events
which are controllable) by which the logical behavior of a DES is regulated to achieve
a given specification. This topic is further discussed in another chapter (see
Supervisory Control of Discrete Event Systems)

Next, we may become interested in event timing in order to answer questions such as:
“How much time does the system spend at a particular state?” or “How soon can a
particular state be reached?” or “Can this sequence of events be completed by a
particular deadline?” These and related questions are often crucial parts of the design
specifications. More generally, event timing is important in assessing the performance
of a DES often measured through quantities such as throughput or response time. In
these instances, we need to consider the timed language model of the system. The fact
that different event processes are concurrent and often interdependent in complex
ways presents great challenges both for modeling and analysis of timed DES.
Moreover, since we cannot ignore the fact that DES frequently operate in a stochastic
setting (e.g., the time when some equipment fails is unpredictable), an additional level
of complexity is introduced, necessitating the development of probabilistic models and
related analytical methodologies for design and performance analysis based on
stochastic timed language models. Sample path analysis refers to the study of sample
paths of DES, focusing on the extraction of information for the purpose of efficiently
estimating performance sensitivities of the system and, ultimately, achieving on-line
control and optimization (see “Sample Path Analysis of Discrete Event Dynamic
Systems” for more details).

These different levels of abstraction are complementary, as they address different
issues about the behavior of a DES. Indeed, the literature in DES is quite broad and
varied as extensive research has been done on modeling, analysis, control,
optimization, and simulation at all levels. Although the language-based approach to
discrete event modeling is attractive in presenting modeling issues and discussing
system-theoretic properties of DES, it is by itself not convenient to address
verification, controller synthesis, or performance issues; what is also needed is a
convenient way of representing languages, timed languages, and stochastic timed
languages. If a language (or timed language or stochastic timed language) is finite, we

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Discrete Event Systems - Christos G. Cassandras

©Encyclopedia of Life Support Systems (EOLSS)

could always list all its elements, that is, all the possible sample paths that the system
can execute. Unfortunately, this is rarely practical. Preferably, we would like to use
discrete event modeling formalisms that would allow us to represent languages in a
manner that highlights structural information about the system behavior and that is
convenient to manipulate when addressing analysis and controller synthesis issues.
Discrete event modeling formalisms can be untimed, timed, or stochastic, according to
the level of abstraction of interest. In the next section, we provide a brief introduction
to one of the major modeling formalisms, based on automata, which also forms the
foundation for supervisory control and sample path analysis (further discussed in
“Supervisory Control of Discrete Event Systems” and “Sample Path Analysis of
Discrete Event Dynamic Systems”). Some more details on the manipulation of
automata for the construction of system models from component models and
comparisons with other modeling approaches are given in “Modeling of Discrete Event
Systems”. We will use automata to illustrate the construction of models for a common
class of DES and contrast it to two other modeling frameworks.

4. Modeling Overview

The introduction to DES in the previous sections has served to point out the main
characteristics of these systems. Two elements which have emerged as essential in
defining a DES are: a discrete state space, which we denote by X , and a discrete event
set, which we denote by E . We can now build on this basic understanding in order to
develop some formal models for DES.

-
-
-

TO ACCESS ALL THE 26 PAGES OF THIS CHAPTER,

Click here

Bibliography

Baccelli, F., Cohen, G., Olsder, G.J., Quadrat, J.-P. (1992). Synchronization and Linearity: An Algebra
for Discrete Event Systems, 514pp., New York, NY, Wiley, Chichester,. [Good reference for the dioid
algebra approach to discrete event systems]

Cassandras, C.G., and Lafortune, S. (1999). Introduction to Discrete Event Systems, 822pp., Boston,
MA Kluwer Academic Publishers. [Textbook with a comprehensive coverage of all aspects of discrete
event systems, including modeling frameworks, supervisory control, discrete event simulation, and
sample paths analysis methods]

Glasserman, P., Yao, D.D. (1991). Monotone Structure in Discrete-Event Systems, 297pp., New York,
NY, Wiley. [This book emphasizes structural properties of discrete event systems that lend themselves
to methods for performance analysis, control, and optimization]

Ho, Y.C. (Ed.) (1991). Discrete Event Dynamic Systems: Analyzing Complexity and Performance in the
Modern World, 291pp. New York, NY, IEEE Press. [A collection of papers reflecting different
approaches to the modeling and analysis of discrete event systems, summarizing the first decade of
research accomplishments in the field]

http://www.eolss.net/Eolss-sampleAllChapter.aspx
https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-27-00

UNESCO –
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XV - Discrete Event Systems - Christos G. Cassandras

©Encyclopedia of Life Support Systems (EOLSS)

Ho, Y.C., Cao, X. (1991). Perturbation Analysis of Discrete Event Dynamic Systems,, 437pp., Boston,
MA, Kluwer Academic Publishers. [This book covers the most important class of sample-path-based
methods for the performance analysis, control, and optimization of discrete event systems]

Peterson, J.L. (1981). Petri Net Theory and the Modeling of systems, Englewood Cliffs, NJ, Prentice
Hall. [Good textbook reference of Petri nets]

Biographical Sketch

Christos G. Cassandras is Professor of Manufacturing Engineering and Professor of Electrical and
Computer Engineering at Boston University. He received a B.S. from Yale University, M.S.E.E. from
Stanford University, and S.M. and Ph.D. degrees from Harvard University. In 1982-84 he was with ITP
Boston, Inc. where he worked on the design of automated manufacturing systems. In 1984-1996 he
was a faculty member at the Department of Electrical and Computer Engineering, University of
Massachusetts/Amherst. He specializes in the areas of discrete event and hybrid systems, stochastic
optimization, and computer simulation, with applications to computer networks, manufacturing systems,
and transportation systems. He has published over 200 refereed papers in these areas, and two
textbooks. He has guest-edited several technical journal issues, serves on several editorial boards, and
he is currently Editor- in-Chief of the IEEE Transactions on Automatic Control. He has received
several awards, including the 1999 Harold Chestnut Prize (IFAC Best Control Engineering Textbook)
for Discrete Event Systems: Modeling and Performance Analysis and a 1991 Lilly Fellowship, and was
elected Fellow of the IEEE in 1996.

