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Summary 
 
The theory of optimal control deals with the problem to find a trajectory of a dynamical 
system that minimizes a given cost function. The problem has a long history, both for 
systems with purely continuous dynamics and for purely discrete systems. An 
application of the first category is to find a path for a space rocket that minimizes fuel 
consumption. A problem of the second category is to find the shortest path through a 
graph. 
 
Fundamental contributions to mathematics as well as engineering have been made 
through the theory of optimal control. It is therefore natural to ask to what extent the 
concepts and results can be extended to hybrid systems, i.e. systems with interaction 
between continuous dynamics and discrete events. 
 
There are two main approaches to optimal control in a continuous state space, 
commonly referred to as “dynamic programming” and “the maximum principle”. The 
first approach describes the optimal cost as function of the initial state, while the second 
is devoted properties of an optimal trajectory. This chapter is mainly focused on 
dynamic programming, since this theory is also well developed for discrete systems and 
the hybrid case therefore fits nicely in between. 
 
1. Introduction 
 
Hybrid systems are systems that contain interaction between continuous and discrete 
dynamics. Such systems are common in engineering, for example when technical 
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equipment with discrete dynamics interacts with a physical environment that evolves 
with continuous dynamics. 
 
An important role of optimal control is to provide a theoretical foundation for synthesis 
problems in engineering and science. The synthesis objectives are specified in an 
optimization criterion, or a cost/performance function. This is a mathematical 
expression that should be minimized/maximized subject to given constraints. The cost 
function is used to penalize various quantities such as energy consumption, deviation 
from a desired set point, unsafe states, etc. Once dynamics, constraints and cost function 
have been specified for the problem, the synthesis task has been converted into a 
mathematical problem, ready for analysis and computational treatment. 
 
This chapter will explain some basic ideas in optimal control of hybrid systems. The 
idea of dynamic programming is first described for purely discrete systems and then for 
purely continuous ones, before dealing with a general class of hybrid systems. The 
method is applied to a gear shift problem. Finally, we consider some other aspects of 
optimal control, including a hybrid version of the maximum principle. 
 
2. Hybrid Dynamic Programming 
 
Dynamic Programming (DP) was introduced by Bellman in 1957, applying Hamilton-
Jacobi optimization theory to problems of control. The basic idea, sometimes called the 
principle of optimality, is that every optimal trajectory can be split into two pieces, each 
of which is optimal in a certain sense. The optimal cost for the original problem is equal 
to the sum of the optimal costs for the two pieces. In continuous time, the so called 
Hamilton-Jacobi-Bellman (HJB) equation is obtained in the limit as the length of one of 
the pieces approaches zero. Dynamic Programming naturally leads to a solution in the 
form of a “feedback law”. 
 
Before considering the general case of hybrid systems, the main steps will be reviewed 
for discrete and continuous systems separately.  
 
2.1. Dynamic Programming in Discrete Systems 
 
Consider the system  
 

0( 1) ( ( ) ( )) , (0) ,q k q k k q qφ μ+ = , =  
 
where ( )q k Q∈  is the state at time k  and ( )k Uμ ∈  is the value of the control signal. 
Given a non-negative function s Q U: × → R  with ( ) 0s q μ, >  for 0q ≠ , the problem 
is to find the optimal value function  
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and corresponding minimizing input sequences (0) (1) …μ μ, , . 
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Under general assumptions, the optimal value function is characterized by “Bellman’s 
equation”:  
 

( ) min{ ( ( )) ( )}
U

V q V q s q
μ

φ μ μ∗ ∗

∈
= , + ,  

 
There are several approaches for solution of this equation. One is to use “value 
iteration”, where a sequence of functions 0 1 2( ) ( ) ( )V q V q V q …, , ,  is generated by 

repeatedly evaluating the right hand side of Bellman’s equation with V ∗  replaced by 
kV . Another approach is to consider the problem  

 

0Maximize ( )V q   (1) 
 

( ) ( ( )) ( ) for all
subject to

(0) 0
V q V q s q q
V
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⎨ =⎩

 

 
which is solved by V ∗ . In fact, every solution to the constraints gives a lower bound on 
the optimal value function for all q  and maximization yields the exact value at 0q . For 
a discrete system, where Q  and U  are finite, (1) is a linear programming problem for 
which efficient algorithms are available.  
 
Example 1 Consider the discrete transportation problem illustrated in Figure 1. Such 
problems have been studied extensively since the 1940’s. The cost for shipping some 
product between node i and node j is given by the number ijs . The objective is to 
minimize the total cost for shipping the production in node 3 to consumers in node 0.  
 

 
 

Figure1: The cost for transportation from node i  to node j  is ijs . The production in 
node 3 should be transported to the consumer in node 0 while minimizing the 

transportation cost. 
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For this problem, the linear programming problem (1) takes the form 
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Note that there is one variable iV  for each node and one inequality constraint for each 
path connecting two nodes. For every solution to the inequality constraints, the number 

3V  provides a lower bound on the cost for shipping products from node 3  to node 0 . 
 
2.2. Dynamic Programming in Continuous Systems 
 
Consider the system 
 

0( ) ( ( ) ( )) , (0) ,x t f x t u t x x= , =  
 
where ( ) nx t ∈R  is the state at time t  and ( )u t U∈  is the value of the control signal. 

Given a function nl U: × →R R , strictly positive except at 0x = , the problem is to 
find the optimal value function  
 

0 0
( ) inf ( ( ) ( ))

u
V x l x t u t dt
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and corresponding minimizing input signals u . 
 
The analog of the discrete Bellman equation is the “Hamilton-Jacobi-Bellman 
equation”: 
 

inf ( ) ( ) 0
u

V f x u l x u
x
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There is a rich literature devoted to this equation. One issue is the interpretation of the 
expression V x∗∂ /∂ , since the optimal value function V ∗  often may not be differentiable 
in the classical sense. The notion of “viscosity solution” has instead proved to be very 
useful. 
 
Value iteration has no obvious counterpart in continuous time, but the linear 
programming approach does: 
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Maximize      ( )0V x  
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Under appropriate assumptions the optimal value is equal to ( )0V x∗ , even if the 
optimization is restricted to differentiable functions V. Both the objective and the 
constraints are linear in V, but the problem is infinite-dimensional so computations are 
generally non-trivial. 
 
- 
- 
- 
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