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Summary 
 
This chapter outlines the basic principles and most important approaches of model-
based fault detection and isolation (FDI) and, to a certain degree, fault diagnosis, using 
linear models. Both the parity space approach and the concept of observer-based 
residual generation are described in input-output format. The well established parameter 
estimation approach to fault analysis is briefly described in terms of using least squares 
estimates. It is shown how fault isolation (and robustness with respect to unknown 
inputs, i.e., modeling uncertainties and unmodeled disturbances) can be achieved with 
the fault detection filter and by decoupling in the frequency domain on the basis of 
observer-based residual generation. Full and approximate decoupling techniques are 
addressed for both structured and unstructured modeling uncertainties. It is further 
shown how structured residuals can be generated for sensor and actuator fault detection 
using the dedicated observer scheme, DOS, and the generalized observer scheme, GOS. 
As far as residual evaluation is concerned, we focus our consideration on the threshold 
test with adaptive thresholds and briefly explain how to find the threshold selector.   
 
1. Introduction 
 
The development of diagnosis systems in the last five decades has clearly shown that 
the model-based approach is by far the most powerful one. Typical for the model-based 
approach is to simulate on a digital computer a model of the nominal or faulty 
functional behavior of the system under consideration and use it as a reference for the 
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identification of malfunctions in the actual system. Even though all natural processes 
are, strictly speaking, non-linear, it is quite common and in many practical situations 
admissible to use linear models. This is especially true in the case of regulator problems, 
where the plant is controlled at a fixed operating point, around which the plant model 
can be linearized with satisfactory accuracy. But there are also situations in practice, 
where the essential behavior of the plant is intrinsically linear and the use of a linear 
model is the quite natural approach. Though the assumption of linearity has limitations 
in practice, the linear approach is of great theoretical value due to the fact that both the 
design and the functioning of the fault detection system becomes transparent, and the 
well-founded and to a high degree mature linear systems theory can be applied. These 
are the main reasons why the development of the model-based fault diagnosis theory 
has been based upon linear models from the very beginning in the early seventies.  
 
Nevertheless, the analytical approach using fixed linear models has severe drawbacks 
when the non-linear character of the system under consideration is dominant or when 
the system is subject to substantial plant uncertainties, unmodeled disturbances, 
unknown parameter variations or structural changes, or when it is poorly defined. All of 
this is quite common in practice. In such cases, non-linear or adaptive or knowledge-
based models, respectively, or, if we stay with fixed linear analytical models, robust 
fault diagnosis schemes are needed in order to reduce the number of false alarms or 
avoid them. Despite of these deficiencies, we base our consideration in this chapter 
upon the assumption, that the behavior of the plant can be represented by well-defined 
linear time invariant mathematical models. This assumption, though ultimately 
idealized, is most useful to understand the basic concepts of model-based fault diagnosis 
and, in particular, of fault detection and isolation (FDI), on which this chapter 
concentrates. It also serves as a basis for extensions towards non-linear, robust, and 
even knowledge-based approaches, which will be treated in detail in later contributions.  
 
Speaking of linear mathematical models means that we take into consideration the 
dynamic behavior of the system in terms of linear differential equations or transfer 
functions (in the continuous case) or linear difference equations or z-transfer functions 
(in the discrete-time case). Though the computer implementation requires at any time a 
discrete-time representation, we base our consideration upon the continuous system 
representation, because our main goal is to outline only the basic ideas and concepts. 
Clearly, the algorithms and results obtained can easily be translated into the discrete 
time case, and more detailed information on the great variety of existing approaches and 
concepts can be found in the cited literature. 
 
2. Model of the System, Faults and Uncertainties 
 
In case of using analytical models, the system behavior may be described either in 
input-output or state space format. For linear continuous systems the state equations 
used for FDI are given by 
   

f f( ) ( ) ( ) ( ) ( ) ( )t t t= + Δ + + Δ +x A A x B B u F f� 1 t

t

  (1) 
 
 f 2( ) ( ) ( ) ( )t t= + Δ +y C C x F f ,  (2)                     
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where is the system state vector, with the system matrix , is the 
known in-put vector, with the input matrix ,  is the measurement vector, 
with the output matrix C , , 

( ) nt ∈x \ A ( ) pt ∈u \
B ( ) qt ∈y \

fΔA fΔB , fΔC   represent the effects of parametric faults, 
( ) st ∈f \  is the vector of (additive) actuator, sensor and component faults, with  and 

 known fault distribution matrices. According difference equations apply in the case 
of discrete-time models.   

1F

2F

 
The corresponding input-output model, with p  the differential operator (or shift 
operator if the system is discrete) is given by  
 

( ) [ ( ) ( )] ( ) ( ) ( )t p p u t p= + Δ +u u f ty G G G f ,  (3)             
 
where ( )puG is the transfer matrix operator from u  to y , ( )pfG  is the fault transfer 
matrix operator from the additive fault vector f  to , y ( )pΔ uG denotes the deviation 
transfer operator caused by faults which are reflected in the parameters.   
  
For mathematical treatment of faults it makes a big difference whether the faults are 
additive or multiplicative. Additive faults can be treated like external inputs. The vector 

 in Eqs.(1)-(3) represents the set of additive faults such as actuator faults, sensor 
faults and some kinds of component faults (e.g., leaks in pipes). Faults that are reflected 
in system parameter variations (“parametric faults”) are characterized by , , 

 and 

( )tf

fΔA fΔB

fΔC ( )pΔ uG ; we call them multiplicative, because they multiply themselves with 
 or , respectively, and are therefore not as easy to handle as additive faults. 

Multiplicative faults can, in principle, be approached by additive faults but then they 
have time-variant coefficients, and they have an effect on the dynamics of the system.  

( )tx ( )tu

 
In Eqs.(1)-(3) modeling uncertainties have not been taken into account. Under modeling 
uncertainties in the widest sense we understand all kinds of discrepancies between the 
mathematical model and the fault free actual system caused by imperfect modeling. 
Typical examples are parameter variations dΔA , dΔB , dΔC that are not mission critical 
like faults, unmodeled dynamics and non-linearities, neglected system disturbances, 
system noise, measurement noise, actuator noise. The latter are often considered in the 
system equations as unknown inputs .  ( )td
 
Note that since modeling uncertainties are not mission-critical, they have to be 
distinguished from faults in that they are tolerable with no need to be detected, but if 
they are misinterpreted as faults by the FDI system, this causes false alarms, and already 
small false alarm rates can make an FDI system totally useless. 
 
According to the way of their mathematical treatment, the modeling uncertainties can be 
divided into two groups: additive and multiplicative. All kinds of unmodeled 
disturbances and noise act like additive external inputs. But parameter deviations 
multiply with state variables  or input variables  and are therefore 
multiplicative. Figure 1 illustrates the difference. Consider, for the sake of simplicity, a 

( )tx ( )tu
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system consisting of a scalar gain factor . Note that the effect of uncertainty, a ( )t aΔu , 
can be interpreted as a (usually time constant) parameter variation  with a time 
variant coefficient . Another difficulty is due to the fact that 

aΔ
( )tu aΔ affects the stability 

of the system. 
 

 
 

Figure 1: a) additive uncertainties, b) multiplicative uncertainties 
 
Taking modeling uncertainties into account the state space model for residual 
generation reads  
 

f d f d 1 1( ) ( ) ( ) ( ) ( ) ( ) ( )t t t= + Δ + Δ + + Δ + Δ + +x A A A x B B B u F f E d� t t

t t

  (4) 
 

f d 2 2( ) ( ) ( ) ( ) ( )t t= + Δ + Δ + +y C C C x F f E d  (5) 
 
where  denotes the vector of (additive) unknown inputs, with  and  the 
corresponding (constant and usually known) distribution matrices, and , , and 

denote the parameter uncertainties which, similar to corresponding fault-induced 
changes, are of multiplicative nature.  

( )td 1E 2E

dΔA dΔB

dΔC

 
The corresponding nominal input-output model can be given as 
 
 ( ) [ ( ) ( )] ( ) ( ) ( )+ ( ) ( )t p p t p t p= + Δ +u u f d ty G G u G f G d  ,  (6)    
 
where  is the transfer matrix operator from d  to , and 

comprises both the parametric faults and parameter uncertainties. 
Note that 

dG y
Δ = Δ + Δu ufG G Gud

d,  and u fG G G  can be calculated from Eqs.(4)-(5). If the matrices 

1 2,  and ( )pdE E G  are known, we speak of structured uncertainties; then is given, 
as well. But often they are unknown. Then the uncertainties are unstructured, but from 

it is usually known that it has at least a bounded frequency response of the form  

Δ udG

Δ uG
 

( ) (j )ω δ ωΔ ≤u uG   (7)  
 
With these assumptions, the most general form of the residual generator can be given as 
a dynamic system with the input-output relation 
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( )  ( ) ( )  ( ) ( )t s t p t= +r P u Q y , (8) 

 
where  and  are realizable transfer matrix operators. In order to make the residual 

 become zero for the fault-free case,  and Q  must satisfy the condition 
P Q

( )tr P
 

( ) ( ) ( )p p p+ =uP Q G 0 .  (9) 
 
Different forms of the residual generator can be obtained by using different forms of P  
and . Substituting Q ( )pP  in (8) by (9) gives the residual generator in the output 
equation form  
 

( ) ( )[ ( ) - ( ) ( )]t p t p= ur Q y G u t , (10) 
 
where ( )pQ  is a filter matrix operator yet free to select. By using the left coprime 
factorization 
 

1ˆ ˆ( ) ( ) ( )s p−=u u uG M N p  
 
and choosing ˆ( ) ( ) ( )p p= uQ R M p

t

, the residual generator can be given in the unified, 
most general equation error form 
 

ˆ ˆ( ) ( )[ ( ) ( ) ( ) ( )]t p p t p= −u ur R M y N u ,    (11)  
 
where 1ˆ( ) ( ) ( )p p −= uR Q M p  is the so-called parameterization matrix which can be 
arbitrarily chosen from the set of stable systems RH∞ .  
 
Substituting y in Eq.(10) by Eq.(6) yields the general form of the residual relation 
 

( ) ( )[ ( ) ( ) ( ) ( ) ( ) ( )],t p p t p t p t= Δ + +u f dr Q G u G f G d   (12) 
 
which considers all kinds of possible model uncertainties in ( ) ( )p tΔ uG u  and 

( ) ( )p tdG d . 
 
A key feature of any FDI system is to ensure robustness with respect to the model 
uncertain-ties in order to keep the false alarm rate of the FDI system zero or at least 
extremely small. This can be attained in both the stage of residual generation and 
residual evaluation. It should though be noted that this is often in conflict with the 
detection quality, that is to say, with the fault detection and isolation sensitivity. In 
terms of Eq.(12) together with (6), the robustness problem in the stage of residual 
generation can be stated as to find a matrix operator  such that the changes and 

 caused by modeling uncertainties can be distinguished from the changes 
and  caused by the faults. 

Q Δ udG
( )tdG d

 Δ uG f ( )tfG f
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The strategies for solving this task with analytical residual generators fall into three 
categories: 
 
1) Perfect decoupling of the residuals from uncertainties (without making use of any 
know-ledge of the time or frequency characteristics of the uncertainties) 
 
2) Approximate decoupling of the residuals from the uncertainties (making use of some 
knowledge of the time or frequency characteristics of the uncertainties). 
 
3)  Knowledge-based selection of those parts of the mode that reflect the faults, i. e., 
allow us to detect the faults while being not or minimally affected by model 
uncertainties.   
 
3. Methods of Residual Generation  
 
The most relevant analytical model-based residual generation methods developed 
during the last three decades have traditionally been divided into three categories: 
 

1. Parity space approach  
2. Observer-based approach (diagnostic observers) 
3. Parameter estimation approach. 

 
Though conceptually different, intensive investigations during recent years have shown 
that there are close relationships among these approaches. It is easy to see that the parity 
space approach leads to a parallel model which can be interpreted as a special class of 
observer, namely the so-called ‘dead-beat’ observer with all poles at the origin. This 
means that the residual generator resulting from the parity space approach can be 
subsumed, as a special case, under the group of diagnostic observers. Moreover, under 
certain conditions, the residuals of the parameter estimation approach can be viewed as 
a non-linear transformation of the residuals of the parity space approach. These 
relationships between the different approaches are not surprising, because all 
approaches exploit the same knowledge, namely the measured inputs and corresponding 
outputs of the system under consideration; they only process this knowledge in different 
ways. However, depending on the special situation, the one or other method can be 
more or less useful and hence the approaches are sometimes used in combination. 
 
4. Parity Space Approach to Residual Generation 
 
The parity space approach is based on a consistency test (‘parity check’) of parity 
equations; these are properly modified system equations in which the inputs and outputs 
are replaced by the actual process measurements. The reason for the modification of the 
system equations is to decouple the residuals from the system states and from the effects 
of disturbances, and the effect of the faults under consideration from the other faults for 
the purpose of isolation. The results of inconsistency, i.e. the residuals of the parity 
equations, are used as indicators of the faults. The parity equations can be derived from 
the state space model of the system or from the transfer functions (or operators). 
Leading to a special type of observer, it has turned out that the parity space approach is 
usually easier to carry out than the observer-based one, because it has less design 
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freedom that has to be managed by the designer. 
 
For linear systems, the basic idea of the parity space approach can be most simply 
outlined in input output format in the frequency domain. Let  be the input 
vector,

( )tu
( )ty  the output vector, and  the transfer function matrix (“the model”) of 

the system, then the basic configuration of the residual generator of the parity space 
approach in input-output format is as shown in Figure 2. 

( )suG

 

 
 

Figure 2: Basic configuration of the residual generator in the parity space approach 
 
The residual vector  can be calculated in terms of the Laplace transform 
(

( )tr
( ) { ( )}s t=R r L  etc.) as 

 
( ) ( )[ ( ) - ( ) ( )]s s s s s= uR V Y G U  , (13) 

 
where ( )sV  represents the transfer matrix of a filter yet free to select in order to reach, 
for example, decoupling of the effect of a fault from the other faults or from the 
unknown inputs.  
                                                                             
The decoupling being achieved by ( )sV  finally means a restriction to that subset of the 
system relations which are independent of or at least only weakly 
dependent upon the other faults (for fault isolation), or upon the critical modeling errors 
and/or unmodeled disturbances (for robustness). Note that for the special choice of 

( ) - ( ) ( )s suY G U s

( )sV  as 
 

ˆ( ) ( ) ( )s s= uV Q M s

s

,  (14) 
 
where  is defined by the factorization , and ˆ ( )suM 1ˆ ˆ( ) ( ) ( )s s−=u u uG M N ( )sQ  is free to 
select, the structure of Figure. 2 becomes equivalent to the structure of the diagnostic 
observer ( Figure 3). This proves the close relationship between the parity-space and the 
observer-based approach, which will be described in more detail in the next paragraph.   
 
5. Observer-based Residual Generation 
 
The basic concept of the observer-based residual generation consists in the 
reconstruction of the output vector of the system of interest from partial sets of 
measured output variables with the aid of an observer or Kalman filter, where the 
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estimation error (or innovation, resp.) or a function or functional of it is used as the 
residual. It is important to note that contrary to the state observer that is used for state 
feedback in the case of incomplete measurement of the system states, a diagnostic 
observer is an output observer aiming at the creation of output redundancy. Hence, in 
the case of linear systems, diagnostic observers can efficiently be designed in the fre-
quency domain without use of state space theory. 
 
The standard structure of a linear diagnostic observer of full order is shown in Figure 3. 
The actual output vector, y , is compared with the output vector, ŷ , of the nominal 
model and the difference, ˆ= −r y y , is fed back with the feedback gain matrix H . The 
feedback is necessary to compensate for unmatched initial conditions and to stabilize 
the observer if the system is unstable. It also provides design freedom in order to reach 
fault isolation by decoupling the effects of faults from other faults or robustness by 
decoupling the effects of faults from the effects of unknown inputs. In a similar way, 
one can use reduced order observers or Kalman filters (in the case of noisy 
measurements), or even non-linear or knowledge-based observers if the system is 
essentially non-linear or no analytical model is available. 
 

 
 

Figure 3:  Basic configuration of an observer-based residual generator: output observer 
of full order 

 
Under ideal conditions, the feedback gain matrix H  has to be chosen such that the 
residual vector  or a measure  becomes r ( )J r
 
=r 0  or    for   (15) ( ) 0J =r f = 0

 
≠r 0  or    for    (16)  ( ) 0J ≠r ≠f 0

 
independent of the unknown input . If it is not possible to decouple r  perfectly from 

, so that r  or  take values different from zero at , one has to utilize the 
increment of  r  caused by the fault. A fault is then declared if  or the measure  
surpasses a certain threshold  or , respectively, that is assigned larger than the 
effect of the unknown inputs in the fault-free case: 

d
d ( )J r f = 0

r ( )J r
T

thJ
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