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Summary 
 
The principle of the design of residual generators for systems described by bilinear 
models, by state affine or control affine state equations, by Takagi-Sugeno fuzzy model 
and by differential algebraic equations is presented. Observer based methods are 
considered for the first four classes of systems, and analytical redundancy relations are 
introduced for the last class of models. 
 
1. Introduction 
 
The performance of model based fault detection and isolation (FDI) systems depends 
heavily on the quality of the available model for the supervised process. As most 
physical systems are inherently nonlinear, precise models must take this nonlinearity 
into account, in order to achieve reliable FDI over the whole working range of the 
supervised process. The tools to be used for the design of FDI systems depend on the 
considered class of models. A distinction can be made between situations where the 
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physical laws governing the process allow one to deduce a model with a specific 
structure, and in the case where black box models are used. The latter are identified 
from experimental data without using physical knowledge. The first class of models will 
be considered here, except for Takagi-Sugeno fuzzy models which might be identified 
from experimental data without using physical relations or might be deduced from a 
smooth nonlinear model based on the laws of physics. Other types of black box models 
like neural nets are not considered; the reader is referred to the bibliography for that 
topic. 
 
A typical FDI system is made of two parts: a residual generator and a decision system. 
The first generates signals called residuals that are nominally equal to zero in the 
absence of faults (after possible vanishing of a transient due to initial conditions), and 
some of the residuals become distinguishably different from zero upon occurrence of a 
fault. The decision system analyzes the pattern of zero and non zero residuals in order to 
determine the most likely faulty component(s). It typically relies on statistical methods 
for change detection and isolation and /or on methods based on qualitative models. As 
these topics are addressed in other articles, the emphasis here will be on residual 
generation. 
 
The simplest problem of residual generation, namely the design of residuals aimed at 
detecting and isolating two faults will be considered, in order to illustrate the principle 
behind the design methods without introducing cumbersome notations. The solution of 
this problem, called the fundamental problem of residual generation (FPRG), will be 
discussed successively for systems described by bilinear, state affine and control affine 
state equations, as well as polynomial differential algebraic equations (DAE’s). Finally 
the design of a fault detection system based on Takagi-Sugeno fuzzy model will be 
described. For the latter class of systems, the issue of fault isolation is not considered. 
 
2. Model Classes 
 
The following notations are used in all the models. x denotes the n-dimensional state 
vector, u, the m-dimensional vector of known inputs, y the p-dimensional vector of 
output measurements. The two possible faults to be considered are represented by the 
variables v1 and v2. These are scalar functions of time that have zero value in the 
absence of fault. Upon occurrence of fault 1, v1 takes arbitrary unknown nonzero values, 
while v2 remains equal to zero, and reciprocally for fault 2. 
 
Bilinear and state affine systems are described by: 

 ( ) ( ) ( )1 1 2 2x A u x Bu e x v e x v
y Cx

⎧ = + + +
⎨

=⎩
 (1) 

where x  denotes the derivative of x with respect to t. In the case of a bilinear system  

 ( ) 0 1

m
i ii

A u A u A
=

= +∑ , (2) 
where , 0,...,iA i m=  are n × n constant matrices and ui denotes the ith component of 
vector u, while for state affine systems, A(u) is supposed to depend smoothly on the 
entries of u. In both cases, ei(x), i = 1, 2, are smooth functions of the entries of x. Note 
that the way the system is called results from the form of the equations when v1 = v2 = 0. 
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Control affine systems are of the following form: 

 

( ) ( ) ( ) ( )

( )

1 1 2 2
1

m

i i
i

x f x g x u e x v e x v

y h x
=

⎧
= + + +⎪

⎨
⎪ =⎩

∑

 (3) 
where f ,gi, i = 1, ..., m, ie , i = 1, 2, and h are smooth functions of their arguments. 
 
Finally systems described by differential algebraic equations (DAE’s) will be 
considered: 
 ( )1 2

1 2, , , , 0, 1,...,v vyu s sss
i eqf x u y v v i n= =  (4) 

where usu  denotes the set made of u and all its time derivatives up to order ( ), us
us u , and 

a similar definition holds for ysy  and , 1, 2v js
jv j = . fi are polynomials in u, y, vj, j = 1, 2, 

and their derivatives, as well as x. In the sequel the notation u  is used to denote u and 
its derivatives up to a finite unspecified order, and similarly for 1 2, ,y v v . 
 
The signals u and vi, i = 1, 2 respectively belong to the classes U and Vi, i = 1, 2 of 
piecewise continuous functions such that, for any initial state, any trajectory of system 
Eqs. (1), (3), or (4) associated to those inputs is defined in the whole interval [0, +∞]. 
 
The description of the Takagi-Sugeno fuzzy model to be used is deferred to section 
Error! Reference source not found., as a different problem is also considered for this 
class of models. 
 
Let us now state the problem of residual generator design. 
 
3. Residual Generator Design 
 
3.1. Problem Statement 
 
The so-called fundamental problem of residual generation (FPRG) can be stated as 
follows: 
 
Definition 1 FPRG for system Eqs. (1), (3), or (4): Design a filter with inputs u and y 
(where y is the output of the considered system Eqs. (1), (3), or (4)) of which the output 
vector r fulfills the following requirements. 
 

1. There exists a set U  in U such that, in the absence of fault v1 (namely when v1 = 
0), r decays asymptotically to zero for any u in U , any v2 in V2, and any initial 
condition of the filter and of system Eqs. (1), (3), or (4) . 

2. When v1 ≠ 0 for all t > t0, r is non zero for at least some t > t0. 
 
Such a filter is called a residual generator for detection of v1. Its output is called a 
residual vector. It will become non zero only upon occurrence of fault 1, once the 
transient due to initial conditions has decayed to zero. If a second residual generator is 
designed by interchanging the role of v1 and v2 in the above problem statement, the 
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output of this filter will only be different from zero upon occurrence of fault 2. By 
monitoring both residual vectors it is thus possible to detect and isolate the faults; 
namely, to determine which fault occurred. 
 
This idea can be generalized to situations were more than two faults can occur. 
Moreover, one need not always require that each residual becomes non-zero upon the 
occurrence of only one specific fault. Indeed, let vj, j = 1, ··· , nf be the possible faults, 
and let rk, k = 1, ··· , nr be the set of residual vectors aimed at detecting and isolating 
each fault. The notion of a coding set is introduced to characterize the residual vectors 
which are affected by a given fault. For instance, the coding set Ωj associated to the jth 
fault is the set of residual vectors which becomes non-zero upon the occurrence of fault 
j (i.e. when vj ≠ 0). In order to achieve fault isolation under the assumption that no 
simultaneous faults occur, it suffices to associate to each fault a different coding set. 
The particular choice where nf  = nr and Ωj = { j} assures that simultaneous faults can 
be detected and isolated. 
 
For models Eqs. (1) and (3), one way to solve the FPRG is first to extract a subsystem 
of which v2 is not an input, and for which an asymptotic observer can be designed. The 
second step is precisely the design of this observer. The output estimation error then 
fulfills requirement 1 of the FPRG, and it qualifies as a residual, provided that it also 
verifies condition 2. The introduction of the set U  in the problem statement is due to 
the fact that nonlinear systems might not be observable for all inputs. Convergence of an 
observer for a nonlinear system might thus only be achieved for signals u belonging to a 
subset of U. 
 
For model Eq. (4), a way to solve the FPRG is to eliminate the state x and fault v2 
together with its derivatives by appropriate operations on the set of DAE’s. The 
resulting DAE’s only depend on 1, andu y v . The polynomial functions that make the 
left hand side of those DAE’s can be evaluated for given experimental data, with 1v  set 
to zero. The results will be zero in the absence of fault 1 ( 1 0v = ) and non-zero 
otherwise. Hence, the corresponding vector signal qualifies as a residual. 
 
Remark 1 The sensitivity of the residual to fault 1 expressed in condition 2 can be 
translated in a mathematical framework in different ways. A mathematically tractable 
statement of this condition also depends on the class of models, but one will not enter 
into those details here. 
 
Remark 2 Saying that a residual asymptotically decays to zero or is equal to zero is 
obviously a theoretical statement. In practice, due to modeling uncertainties, model 
discretization to handle sampled data, approximation of derivatives of the signals (for 
DAE models), and measurement noise, a residual will not decay to zero or be equal to 
zero, but its norm will on average remain under a fixed bound. A faulty behavior will 
then be characterized by a norm of the residual larger than this bound. 
 
3.2. Principle of the Solution of the FPRG for Bilinear Systems 
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As already stated, the solution relies on the determination of a system with v1 as the 
only unknown input, from the original state space model of the plant, Eq. (1). 
To this end, (m + 1) output injection maps  

 : , 0,..., ,p n
iD i m→ =  (5) 

and an output mixing map 
 : p pL →  (6) 
are introduced in order to define the following system class : 

 ( ) ( ) ( ) ( )0 0 0 1 1 2 2
1 1

m m

i i i i i
i i

x A D C x u A DC x D y u D y Bu e x v e x v
= =

= + + + − − + + +∑ ∑  (7) 

 z LCx=  (8) 
This system has the same dynamics as system Eq. (1). Equation (7) can be rewritten in 
the following compact form, with notations similar to that of Eq. (1): 

 ( ) ( )( ) ( ) ( ) ( )1 1 2 2x A u D u C x D u y Bu e x v e x v= + − + + +  (9) 
 
To proceed, set D = (D0, ..., Dm), and consider the subspace S(L, D) spanned by the row 
vectors: 

 ( ) ( ) { }, , ,
1

, ,..., , 2, , 0,...,
k k

l

i i j j i j j k
k

L C L C A D C L C A D C l j j m
=

+ + ≥ ∈∏i i i  (10) 

where ,iL i  is the ith row of L. Assume that Di, i = 0, . . . , m and L have been determined 

so that this subspace has dimension d < n. Let ( )1, ,,..., dT Ti i be a basis of S(L, D), and let 

( )1, ,,...,d nT T+ i i be (n − d) row vectors such that the matrix  

 
1,

,n

T
T

T

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

i

i

 (11) 

is invertible. Set 

 
1

2
Tx

⎛ ⎞ζ
ζ = = ⎜ ⎟

ζ⎝ ⎠
 (12) 

where 

 
1,

1

,d

T x

T x

⎛ ⎞
⎜ ⎟ζ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

i

i

, (13) 

 
1,

2

,

d

n

T x

T x

+⎛ ⎞
⎜ ⎟ζ = ⎜ ⎟
⎜ ⎟
⎝ ⎠

i

i

. (14) 

 
In the new system of coordinates ( ),..., n1ζ ζ , system Eqs. (7), (8) can be written: 

 ( ) ( ) ( ) ( )1 11 1 1 1 1 1
1 1 2 2A u D u y B u e v e vζ = ζ − + + ζ + ζ  (15) 
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 ( ) ( ) ( ) ( ) ( )2 21 1 22 2 2 2 2 2
1 1 2 2A u A u D u y B u e v e vζ = ζ + ζ − + + ζ + ζ  (16) 

 
1z C= ζ  (17) 

where 

 
( ) ( )( ) ( )

( ) ( )

11
1

21 22

0A u
T A u D u C T

A u A u
−

⎛ ⎞
⎜ ⎟+ =
⎜ ⎟
⎝ ⎠  (18) 

 

( )
( )

( )
1

2

D u
TD u

D u

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠  (19) 

 
( )
( )

( )
1

1

2
, 1, 2i

i

i

e
Te T i

e

ζ

ζ
−

⎛ ⎞
⎜ ⎟ = ζ =
⎜ ⎟
⎝ ⎠

, (20) 

 

1

2

B
TB

B

⎛ ⎞
⎜ ⎟ =
⎜ ⎟
⎝ ⎠ , (21) 

 
10C LCT −⎡ ⎤ =⎣ ⎦  (22) 

 
This state transformation is a generalization to bilinear systems of the well known 
approach to separate a linear system into its observable and non observable parts. By 
construction, the bilinear system: 

 ( )1 11 1A uζ = ζ  (23) 

 
1z C= ζ  (24) 

is observable. Moreover, if 

 ( )
1,

1
2

,

0

d

T
e T

T

−

⎛ ⎞
⎜ ⎟ ζ =⎜ ⎟
⎜ ⎟
⎝ ⎠

i

i

 (25) 

for all nζ∈  then  

 ( )1
2 0e ζ ≡  (26) 

and v1is the only unknown input of system Eqs. (15), (17). The issue of determining L 
and Di, i = 0, . . . , m in order to obtain a system of the form Eqs. (15), (17) with  
 ( )1

2 0e ζ ≡  (27) 
 
is considered below. The next step is the design of an exponential observer for this 
system when v1 = 0. It can be shown that, for any input signal u in a specific set U , the 
following system is such an observer:  

 

( ) ( ) ( )
( ) ( )

1 11 1 1 1 1 1

11 11

ˆ ˆT

T T

A u D u y B u S C C z

S S A u S S A u C C

−⎧ζ = ζ − + − ζ −⎪
⎨
⎪ = −θ − − +⎩  (28) 
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where θ∈  is positive, and can be adjusted to obtain suitable observer dynamics. S(0) 
should be positive definite, and ( )1ˆ 0ζ  can be set equal to zero in the absence of a 

priori information. The set U  contains the, so-called, regularly persistent inputs for 
system Eqs. (23), (24). Roughly speaking, for such inputs, the observability Gramian 
that is associated with system Eqs. (23), (24), computed over specific time intervals, is 
positive definite. 
 
The output reconstruction error : 

 
1ˆr z C Ce= − ζ =  (29) 

where  

 
1 1ˆe = ζ −ζ , (30) 

fulfills condition 1 of the FPRG. 
Indeed, notice that e is governed by: 

 
( )( ) ( )11 1 1

1 1
Te A u S C C e e v−= − + ζ

 (31) 
with ζ obtained from Eqs. (15), (16). Hence, given the exponential convergence of the 
observer for all u U∈ , r exponentially decays to zero when v1 ≡ 0 for any v2 ∈ V2. To 
qualify as a residual it must also verify condition 2 of the FPRG. 
 
Clearly a necessary condition to assure sensitivity to fault 1 is that  

 ( )1
1 0e ζ ≡ , (32) 

which means that  
 ( ){ }1 1 , nspan e x x= ∈E  (33) 
cannot be included in the kernel of 

 
1,

,d

T

T

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

i

i

. (34) 

 
To be able to state a necessary and sufficient condition for the existence of a solution to 
the FPRG, the notion of (C, A)-unobservability subspace must be introduced, where A 
= (A0, . . . , Am). Such a subspace is the annihilator, S(L, D)⊥, of the subspace S(L, D) for 
given L and D, namely the set of all np∈  such that, for any row vector q in S(L, D), 
qp = 0. In the solution of the FPRG, the interest is in (C, A)-unobservability subspaces 
which contain  
 ( ){ }2 2 , nspan e x x= ∈E . (35) 
 
Indeed, once a basis for such a subspace is known, one can directly obtain the 
corresponding matrices L and Di, i = 0, . . . , m and a basis for the associated subspace 
S(L, D). Furthermore a state transformation T that brings the original system into the 

form Eqs. (15), (16) with ( )1
2 0e ζ ≡  is obtained. It can be shown that the family of (C, 
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A)-unobservability subspaces containing E2, denoted U(C, A; E2), admits an infimal 
element,  
 2

∗∗E , (36) 
namely an element which is contained in all the other elements of the family. A 
necessary and sufficient condition for the existence of a solution to the FPRG is: 
 1 2

∗∗⊄E E  (37) 
 
Geometric system theory provides a computational way to derive a basis for 2

∗∗E . It is 
based on two sequences of subspaces. The first one: 

 ( )
0 2

1
0

ker
m

i i j i
j

V

V V A V C+
=

=⎧
⎪
⎨ = + ∩⎪
⎩

∑

E
 (38) 

is an increasing stationary sequence of which the limit, 2
∗E , is the element 

k
V ∗  such that 

k k
V V ∗=  for  
all k ≥ k*. The second one: 

 ( )
0 2

1
1 2

0

ker

ker
m

j i j
i

W C

W A W C

∗

∗ −
+

=

⎧ = +
⎪
⎨ ⎛ ⎞

= + ∩⎜ ⎟⎪
⎝ ⎠⎩
∩

E

E
 (39) 

has precisely 2
∗∗E  as a limiting element. 

 
Equations (38) and (39) lead to a numerical algorithm relying only on linear algebraic 
operations to deduce a basis for 2

∗∗E . From this, the associated matrices L** and  

 , 0,...,iD i m∗∗ =  (40) 
can be determined and the design of a residual generator can be performed. 
 
Remark 3 There are other approaches to design observer-based residual generators 
for bilinear systems. Some of them do not resort to the geometric concepts introduced 
here; however, such tools are at the basis of the generalization of the results to state 
affine and control affine systems. One of these approaches uses a filter with linear time-
invariant error dynamics instead of the time varying dynamics observed in Eq. (31). 
This makes the implementation of the filter easier. However, there are situations where 
the FPRG admits a solution, but there is no filter with linear time-invariant error 
dynamics that solves it, while a filter with linear time-varying error dynamics exists. 
 
Remark 4 The tendency was to use as few results from nonlinear system theory as 
possible in the above presentation. Actually, S(L, D) is linked to the observation space 
of system Eqs. (7), (8) that will be denoted O(L, D). Indeed, the codistribution dO(L, D) 
= {dτ, τ ∈ O} (where d is the classical differential operator) can be identified with the 
vector space S(L, D). Moreover, the  
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(C, A)-unobservability subspace associated to L and D can be identified with kerdO(L, 
D). 
 
- 
- 
- 
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