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Summary 
 
This article introduces the structural model of a system, which is an abstraction of its 
behavior model in the sense that only the structure of the constraints, i.e. the existence 
of links between variables and parameters is considered, and not the constraints 
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themselves. The links are represented by a bipartite graph, which is independent of the 
nature of the constraints and variables (quantitative, qualitative, equations, rules, etc.) 
and of the value of the parameters. This indeed represents a very low level, easy to 
obtain, model of the system behavior. In spite of their simplicity, structural models can 
provide many useful information for Fault Detection and Isolation (FDI) and Fault 
Tolerant Control (FTC) design, since structural analysis, which consists of the analysis 
of the system bipartite graph, is able to identify those components of the system which 
are – or are not – monitorable, to provide design approaches for analytic redundancy 
based residuals, to suggest alarm filtering strategies, and to identify those components 
whose failure can – or cannot – be tolerated through reconfiguration. 
 
1. Introduction 
 
The design of fault detection and isolation (FDI) and fault tolerant control (FTC) 
algorithms, like the design of control algorithms, is based on models. Unlike control, 
which addresses nominal (sometimes uncertain) systems, FDI and FTC address faulty 
ones. 
However, detailed behavior models are seldom available in the first phases of system 
design, when complex processes, with hundreds of variables are considered, and simpler 
models have to be used. This article introduces the structural model of a system, which 
is an abstraction of its behavior model in the sense that only the structure of the 
constraints, i.e., the existence of links between variables and parameters is considered, 
and not the constraints themselves. The links are represented by a bipartite graph, 
which is independent of the nature of the constraints and variables (quantitative, 
qualitative, equations, rules, etc.) and of the value of the parameters. This indeed 
represents a very low level, easy to obtain, model of the system behavior. 
 
Structural analysis is concerned with the properties of the system structure model, 
which resorts to the analysis of its bipartite graph. Thus, structural properties are true 
almost everywhere in the system parameter space. 
 
In spite of their simplicity, structural models can provide many useful information for 
FDI and FTC design, since structural analysis is able to identify those components of 
the system which are – or are not – monitorable, to provide design approaches for 
analytic redundancy based residuals, to suggest alarm filtering strategies, and to identify 
those components whose failure can – or  cannot – be tolerated through reconfiguration. 
 
In this article, structural properties of interest are connected with the design of FDI and 
FTC systems. Namely, one is interested in: 
 
• the identification of the monitorable part of the system, i.e. the subset of the system 

components whose faults can be detected and isolated, 
 
• the possibility to design residuals which meet some specific FDI requirements, 

namely which are robust (i.e. insensitive to disturbances and uncertainties), and 
structured (i.e. sensitive to certain faults and insensitive to others), 

 
• the existence of reconfiguration possibilities in order to estimate (resp. to control) 
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some variables of interest in case of sensor, actuator or system component failures. 
 
Answers to these questions are provided by the analysis of the system structural graph 
and its canonical decomposition. In order to introduce the canonical decomposition, 
matchings on a bipartite graph are first presented, and their interpretation is given, 
introducing the idea of causality which provides the bipartite graph with an orientation. 
Then the canonical decomposition of the system structural graph is presented, and 
structural observability and controllability issues are discussed. The design of FDI 
systems is addressed by the determination of robust and structured residuals, which can 
be designed for those subsystems in which some redundancy is present. Finally, fault 
tolerance issues consider the possibility to reconfigure the system in case of component 
failures, which rests on the permanence of the observability and controllability 
properties of the part of the system that has not failed. 
 
2. Structural Model  
 
2.1. Structure as a Bipartite Graph 
 
The behavior model of a system is a pair [ , ]C Z  where 1 2{ , , }NZ z z z= …  is a set of 
variables and parameters, and 1 2{ , , }MC c c c= …  is a set of constraints. Consider, for 
example, state space models like 
 

( ) ( ( ), ( ), )t f t t θ=x x u ,  (1) 
 

( ) ( ( ), ( ), )t t t θ=y g x u ,  (2) 
 
where ( ) nt R∈x  is the system state, ( ) mt R∈u  and ( ) pt R∈y  are respectively the 

system inputs and outputs, and qRθ ∈  is some parameter vector. Since the distinction 
between vectors and sets of components is clear from the context, no special notation 
will be introduced to distinguish them. Thus,  in (1) (2), the sets of variables and 
constraints are 
 
Z
C f

θ=
=

∪ ∪ ∪
∪
x u y

g,
  (3) 

 
where f  stands for the set of  differential constraints 
 

( ) ( ( ), ( ), ) 0, 1,i it f t t i nθ− = = …x x u  
 
and g  stands for the measurement constraints 
 

( ) ( ( ), ( ), ) 0, 1,...,j jt t t j pθ= = =y g x u . 
 
A popular structural representation of the behavior model (1), (2) uses a directed graph 
(digraph), whose set of vertices is the set of the input, output and state variables and 
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whose edges are defined by the following rules: 
 

• an edge exists from vertex kx  (resp. from vertex lu ) to vertex ix  if and only if 
the state variable kx  (resp. the input variable lu ) really occurs in function if (i.e. 

i

k

f∂
∂x - resp. i

l

f
u
∂
∂ - is not identically zero) 

 
• an edge exists from vertex kx  to vertex jy  if and only if the state variable kx  

really occurs in the function jg . 
 
The digraph representation is an abstraction of the behavior model since edges can be 
interpreted as “mutual influences” between variables. Indeed, an edge from kx  (resp. 
from lu ) to ix  means that the time evolution of the derivative ( )i tx  depends on the time 
evolution of ( )k tx  (resp. ( )lu t ). Similarly, an edge from kx  to jy  means that the time 

evolution of the output ( )j ty  depends on the time evolution of the state variable ( )k tx . 
For illustration, consider the following simple example 
 

1 1 1 2 2

2 2 1 2 2

1 2 1

( , , )
( , , )

( , , ) .

f
f a b

= =

= = +

= =

x x x u x

x x x u x u

y g x x u x

  (4) 

 
The associated digraph is given by Figure 1. 
 

 
 

Figure 1: The digraph of system (4) 
 
Alternatively, the structure of (1), (2) can be represented by a bipartite graph with the 
two sets of vertices C  and Z , and edges defined by the following rule. 
 
• an edge exists between vertex ic C∈  and vertex jz Z∈  if and only if the variable 
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jz  really appears in the constraint ic  (whatever it is a differential or a measurement 
constraint). 

 
Figure 2 gives the bipartite graph representation of the example (4), where bars 
represent constraints and circles represent variables. 
 

 
 

Figure 2: The bipartite graph of system (4) 
 
Note that parameters can be taken into account, by considering them as variables which 
have constant (known or unknown) values. In the following this will be done implicitly 
(thus the set Θwill no longer appear). Note also that the bipartite graph is a non 
oriented graph, which can be interpreted as: all the variables and parameters connected 
with a given constraint vertex have to satisfy the equation this vertex represents, namely 
differential equations for the f  vertices and measurement equations for the g vertices. 
This graph allows to represent the structure of models more general than (1), (2) since 
algebraic constraints (different from the measurement constraints) might also exist in 
the system model. Let  
 

a dZ
C f h,
=

=

∪ ∪ ∪

∪ ∪

x x u y

g
  (5) 

 
where ax  is the set of variables which appear only in some algebraic constraints h , and 

dx  are variables whose derivative obeys some differential constraints f . The system 
model is  
 

( , , )d d af=x x x u   (6) 
 
0 ( , , )d ah= x x u   (7) 
 

( , , )d a=y g x x u .  (8) 
 
Note that it is possible to define an extra set of variables dx  and an extra set of 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS AND AUTOMATION – Vol. XVI - Structural Analysis for Fault Detection and Isolation and 
for Fault Tolerant Control - Marcel Staroswiecki 
 

©Encyclopedia of Life Support Systems (EOLSS) 

constraints { , 1, }id d i n= = … , where constraint id  is defined by  
 

( ) ( ) 0i i
dt t
dt

− =x x   (9) 

 
so that the system is  
 

a d dZ
C f h d.
=

=

∪ ∪ ∪ ∪

∪ ∪ ∪

x x x x y

g
  (10) 

 
Therefore, all the constraints (6), (7) and (8) are algebraic, and the differential 
constraints (9) are all gathered in d . For system (4) such as representation is given in 
Figure 3. 
 

 
 

Figure 3: Extended bipartite graph of system (4) 
In the following, bipartite graphs will be used for the representation of the system 
structure. 
 
Definition 1 (structural model): The structural model (or the structure) of the system 
[ , ]C Z  is a bipartite graph C, Z ,E< >  where E C Z×⊂  is the set of edges defined 
by: 
 
( , )i jc z E iff∈  the variable jz  appears in the constraint ic  
 
2.2. Subsystems 
 
In this subsection, subsets of the constraints are considered. Let 2C  (resp. 2Z ) be the 
collection of all subsets of C (resp. of all the subsets of Z ), and let C, Z ,E< >  be the 
structure of the system [ , ]C Z . Let Q  be the mapping which associates with any subset 
of constraints φ , the variables which intervene in at least one of them: 
 

2 2
( ) { ; s.t. ( , ) }.

C Z

z Z c c z Eφ φ φ
→

= ∃∈ ∈ ∈
Q

Q

:   (11) 

 
Definition 2 (subsystem): A subsystem is a pair [ ( )]φ, φQ , where Cφ ∈2 . The sub-
graph that is related with subsystem [ ( )]φ, φQ  is its structure. 
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In this definition, a subsystem is any subset of the system constraints φ  along with the 
related variables ( ) Zφ ∈Q . There are no specific requirements to the choice of the 

elements in φ , and 2C  contains all possible subsystems. Of course, only some of them 
are of interest in applications (e.g. the monitorable subsystem). 
 
2.3. Structural Properties 
 
The structural model of a system is an abstraction of its behavior model. Two systems 
which have the same structure are said to be structurally equivalent. Since structural 
properties are properties of the structural graph, they are obviously shared by all the 
systems which have the same structure. In particular, systems which only differ by the 
value of their parameters are structurally equivalent, thus making structural properties 
independent of the values of the system parameters. 
 
Of course, actual system properties may differ from structural ones, as can be seen from 
the following simple example. Let 
 

1 1

2 2

( ) ( )
( ) ( )

a b
c d
θ θ
θ θ

⎛ ⎞ ⎛ ⎞⎛ ⎞
=⎜ ⎟ ⎜ ⎟⎜ ⎟

⎝ ⎠⎝ ⎠ ⎝ ⎠

y x

y x
 

 
be the model of a system where 1y  and 2y  are known, qRθ ∈  is some parameter vector, 
and the observability of the unknowns 1x , 2x  is investigated. The observability 
condition is that the matrix is invertible. The structural condition is that no row (no 
column) of this matrix contains only zeros. This is of course necessary, but not 
sufficient, since the determinant ( ) ( ) ( ) ( ) ( )a d b cθ θ θ θ θ= −Δ  might be zero, so that the 
property would not hold for the actual system although the structural property holds. 
Two cases can be distinguished: 
 
1) in the first case, parameters θ  always satisfy the relation ( ) 0θ =Δ  and thus the 

structural property is never translated into an actual property. This is excluded in 
structural analysis. First, an algebraic relation like ( ) 0θ =Δ  is always supposed to 
define a manifold of dimension 1q − , which means that it cannot be satisfied by any 

qRθ ∈  or, in other words, that it does not boil down to 0 0= . Second, the 
parameters are always supposed to be independent, which means that they live in the 
whole space qR . Indeed, if this were not the case, equation ( ) 0θ =Δ  should have 
been included in the system model. 

 
2) in the second case, the parameters θ  of the system under investigation satisfy the 

relation ( ) 0θ =Δ , and thus the structural property is not translated into an actual 
property for that particular system. Structural analysis however provides 
interesting conclusions, since under mild assumptions about functions , , ,a b c d  
there always exists a parameter vector θ′  in the neighborhood of θ  for which the 
actual property coincides with the structural one. 
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In conclusion, actual properties are only potential when structural properties are 
satisfied. They can certainly not be true when structural properties are not satisfied. In 
other words, structural properties are properties which hold for actual systems almost 
everywhere in the space of their independent parameters. 
 
3. Matching on a Bipartite Graph 
 
The basic tool for structural analysis is the concept of matching on a bipartite graph, 
which is introduced in this section. In loose terms, a matching is a causal assignment 
which associates some system variables with the system constraints from which they 
can be calculated. Variables which cannot be matched cannot be calculated. Variables 
which can be matched in several ways can be calculated by different (redundant) means, 
thus providing a means for fault detection and a possibility for reconfiguration. 
 
- 
- 
- 
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