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Summary 
 
Transmission and distribution of electrical energy requires powerful networks 
independent of the deregulation of the electricity industry. Hence, network operation as 
a natural monopolistic task requires efficient and reliable operation and control tools. 
The network security has a static and dynamic aspect. In the static security assessment, 
preventive and/or corrective control actions must be carried out in order to keep the 
network state in a secure operating state. In dynamic security assessments, the network 
control is concerned with optimal power-frequency and voltage control. These two basic 
control problems differ in many respects. However their successful implementation in a 
modern SCADA/EMS is a mandatory prerequisite for optimal energy transfer though 
transmission and distribution networks. 
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1. Introduction 
 
The high technical standard of electric energy transmission and distribution networks 
has a double basis: 
 
- Advanced technology of the components (e.g., circuit breakers, transformers, 

power lines, cables etc.) comprising all parts of the electrical network (primary 
technique) 

- Implementation of high level information processing and control methods to 
ensure efficient economic and secure network operation and control (secondary 
technique). 

 
The optimal combination and coordination between these two fields is a major 
engineering challenge for the implementation and operation of modern electrical 
network control. 
Figure 1 shows schematically the structure of transmission and distribution systems 
concerning the different voltage levels. 
 

 
 

Figure 1. Structure of an electrical network 
 
The electrical energy high voltage transmission system comprises the voltage levels 
from 220 kV upwards. The main functions include: 
 

- Connection of large power generation plants 
- Supply of very large customers with high short-circuit power requirement 
- Energy transmission between interconnected partners on a national and/or 
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international level. 
 
The subtransmission systems are operated between 110 kV and 160 kV. They are used 
for bulk power distribution. Medium sized power plants and large customers are 
connected to this voltage level. 
 
The distribution systems include the voltage levels between 10 kV and 60 kV. In view 
of their large size the need of standardisation of its equipment is very high. Medium 
sized customers are connected to this voltage level. Furthermore they supply the low 
voltage distribution networks operated with up to 0.4 kV. 
 
The mathematical model of electric power network may be described by the load-flow 
equations. They are based on the concept of nodes and branches, which may be 
modelled by the nodal admittance matrix kY . The relation between nodal currents kI  
and voltages kV are given by 
 

k k kI Y V=  (1) 
 
Since the current vector kI  is not given, it has to be replaced by the nodal power 
defined as 

i Gi LiS S S= −  (2) 
 

GiS  denotes the complex generated power and LiS  the consumed complex powering 
node i . Through the relation 
 

y
i i iS V I= ⋅  (3) 

 
it becomes possible to replace the nodal current by iS ., Hence the complex network 
equations may be written as 
 

* *

1

n

i i ij j
j

S V y V
=

= ∑  (4) 

 
when ijy denotes the elements of kY and n is the total number of network modes. 
Powerful algorithms are available for the solution of these complex nonlinear network 
equations with respect to the node voltages iV . They are termed state variables because 
their numerical values completely determine the operating state of the electric network. 
 
The liberalization and restructuring of the electrical industry led to the unbundling 
between generation, transmission/distribution and energy trade. The result of this 
development is a large number of grid companies. Within the liberalized energy systems 
they are characterized by a natural monopolistic structure. The incomes of a grid 
company are obtained from the corresponding transmission/distribution costs and the 
ancillary services. It is obvious that the restructuring measures have a great impact on 
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the effective and minimal cost operation and control of electrical networks. 
 
Compared to conventional power system engineering, advanced digital information 
processing and control systems are relatively young engineering disciplines. However, 
modern power systems need to be operated with a well-developed information 
technology; but even the most advanced information technology cannot improve the 
operation of a poorly planned and/or implemented power system. 
 
The hierarchical structure of an electrical network control system is shown in Figure 2. 
It consists of the decentralized tasks of power plant control as far as ancillary services 
are concerned, substation control and load control, on one side, and the centralized 
power system control on the other. In both levels the main classes of 
 

- Information processing 
- Monitoring, protection, command and control 

 
are evident. Without digital data transmission and processing systems, the realization of 
these control systems is inconceivable. 
 
A simplified structure of a modern energy management system (EMS) is shown in 
Figure 3. The power system measurements are transmitted via a digital information 
system to the central control office. 
 

 
 

Figure 2. Hierarchical structure of electrical network control 
 
The primary analysis serves the monitoring of the network and covers the following 
tasks: 
 

- Programs for message switching 
- Control of the information display systems 
- Recording of status and events 
- Information processing for telecommand and control. 

  
These functions are summarised as supervisory control and data acquisition (SCADA). 
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Figure 3. Energy management system with the primary analysis for monitoring, and  the 
secondary analysis for system operation and control 

 
The advanced decision support and optimization tools in the secondary analysis are used 
for network operation and control. They include: 
 

- State estimation and topology monitoring 
- Optimal power flow 
- Static and dynamic network security analysis 
- Load prediction 
- Transmission management 

 
2. Power system engineering 
 
Power system engineering deals both with individual components such as substations, 
power lines, transformers, protection systems etc. and with operational and control 
aspects of the entire system related to: 
 

- Economy and operation 
- Security of supply 
- Quality with respect to frequency and voltage level 
- Environmental compatibility. 

 
Based on system engineering concepts the operational states of an electrical network 
may be classified according to the classes shown in Table 1 and illustrated in Figure 4. 
 

State Energy equilibrium Technical and 
economical 
constraints 

(n-1) Principle 

Normal satisfied satisfied satisfied 
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Alert 
Disturbed 
Network splitting 
Restoration 

satisfied 
satisfied 
not satisfied 
not satisfied 

satisfied 
not satisfied 
not satisfied 
satisfied 

not satisfied 
not satisfied 
not satisfied 
not satisfied 

 
Table 1. Operational states of an electrical network 

 
The (n-1) principle implies that the loss of one arbitrary power systems component does 
not lead to a power supply disruption. 
 
After the transition from the normal to the alert state, preventive actions by the control 
engineer are needed to avoid power supply disruption as the result of a possible 
following fault in the power system. If the power system is disturbed, corrective actions 
must be taken because important technical and/or economical constraints may be 
violated. 
 
The basic features of a modern EMS may be described as follows: 
 

- Monitoring the system state by means of analogue and digital 
information 

- Interaction with the electrical network in a preventive or corrective 
manner 

- Regulation of frequency and voltage 
- Reliable and complete system information despite wrong or missing data 
- Evaluation of operational risks for the present or future state 
- Actions to improve power system security and stability 
- Economic operation e.g., with minimal losses. 

 

 
 

Figure 4. Classification of the operational states of an electrical networkThe necessity 
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for EMS arises from many factors affecting electrical network operation: 
 

- Future development of electric energy demand in industrial and 
developing countries 

- Availability of primary energy resources for power generation 
- Rapidly changing economical and political constraints  
- Functioning of the power system within operational limits because of 

limited availability of generation and/or transmission capacity due to 
restrictions in the necessary system expansion 

- Strong impact of new technology based on microelectronics for a more 
reliable and economical operation as well as rational use of electricity 

- Increased use of information technology to handle the complex decision-
making process of modern network control. 

 
3. Evolution of electrical network control technology 
 
The most important significant events in the evolution of electrical network control 
technology are represented in Figure 5. Until about 1940 the dispatchers of the electrical 
network were located either in a power station or a large substation. The advent of 
electric network control technology evolved through local monitoring and control, the 
use of a static mimic board and the telephone for commands to the field operators. The 
evolution of data acquisition and remote control starts with analogue techniques. 
Automatic generation, interchange and frequency control also used the analogue 
technique. During the period 1950 – 1970, digital computers were extensively used for 
off-line power system planning studies. The New York blackout (1965) forced the 
power utilities to reconsider on-line reliability problems, the most important 
consequence being the accelerated introduction of SCADA/EMS. Following the 
introduction of process computers in power plants, process computers and the graphical 
displays were also implemented in network power dispatch control centers. 
 
The period after 1970 was very fruitful in the development of state estimation and 
optimal power flow theory. The second great blackout in the USA in 1977 reinforced 
the importance of network security assessment. Other blackouts and incidents in Europe 
highlighted such aspects as dispatcher training simulators, corrective actions in 
emergency situations or the importance of voltage stability. The Three Mile Island 
incident emphasised the importance of human engineering in displaying the information 
to the operator. Since the eighties SCADA/EMS are also penetrating the medium-
voltage networks. However, the tasks of distribution automatization are different from 
the specific functions of the SCADA/EMS in high-voltage power transmission systems. 
There is a growing awareness of the need to unify dispatch of supply and demand 
(economic dispatch and load management). The unbundling of electric utilities 
supported the formation of new grid companies. Since they have tight financial 
constraints the network control implies optimal use of the transmission/distribution 
capacity. Since the network may be heavily loaded the problem of voltage stability 
becomes an important issue. The grid companies must solve the 
transmission/distribution tasks in an undiscriminatory manner and with transparent fees. 
New tasks such as congestion and transmission management must be integrated in new 
EMS. 



UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION - Vol. XVIII - Electrical Network Control - Handschin, E. 
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

 
 

Figure 5.   Significant events in the evolution of electric network control technology 
 
The necessity to operate the power system closer to technical and economic limits 
accelerated the implementation of optimal power flow considering security constraints 
in EMS. The different objective functions for the optimization include: 
 

- Real power losses 
- Equal voltage profile 
- Pre-specified short-circuit capacity. 

 
Powerful computer hardware permits the realization of complex optimization 
procedures in real-time. However, efficient handling of sophisticated EMS still requires 
highly skilled and trained operators. 
 
The use of knowledge-based systems into SCADA/EMS constitutes a further 
development in network control technology. It offers a new form of implementing 
algorithmic procedures together with heuristic methods. Knowledge-based information 
processing supports the complex decision-making process of the network operator. 
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