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Summary 
 
Automation and control is pervasive in modern society.  Virtually every complex 
engineering system—an aircraft or spacecraft, a home or building, an oil refinery or 
paper plant, an automobile or robot—depends crucially on sensing, feedback, and 
actuation for its predictable, safe, and efficient operation.  This article reviews the 
“controller” versus “plant” distinction, noting its multifaceted nature.   
 
The control loop is reviewed with specific attention to sensors, feedback, and actuation.  
Particular attention is paid to elements of control systems that relate to information 
technology; processors, input and output interfaces, communication networks, and 
wireless are discussed.   
 
Three trends are identified as indicative of future developments in automation and 
control:  enterprise optimization, autonomous and semi-autonomous systems, and 
embedded controllers. 
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1. Introduction 
 
We’re so immersed in today’s human-engineered world that it’s easy to forget it wasn’t 
always this way.  Life in modern societies bears little resemblance to how people lived 
even a few generations ago.  The environments we inhabit, the materials we use for 
many of our assets, the foods we eat, the means by which we transport ourselves, were 
all nonexistent and in many cases unimaginable in the recent past. 
 
A variety of machines, devices, and artifacts has enabled these and many other 
developments.  A list of these is a litany of engineering achievements spanning a 
century of technological progress: aircraft, automobiles, oil refineries, power plants, 
office buildings, paper mills, chemical manufacturing facilities, textile factories, ships, 
industrial robots, communication networks, traffic management systems, airports, 
electric power grids, and numerous other inventions of the modern age. 
 
These systems vary, in terms of their physical scales, from continent-size power grids 
and the planetwide Internet to biomedical and other small-scale devices. The systems 
also operate at different time scales—compare the speed-of-light operation of a 
communication network with the crawl of a congested highway.  The physical 
principles underlying the operation of an engineering system also vary widely, as is 
evident from the number of separate engineering disciplines that have evolved over the 
course of technological development: electrical, chemical, mechanical, civil, petroleum, 
aerospace, and others.   
 
Yet, despite the diversity, the engineering artifacts mentioned above, and others we’ll 
note later on, share an important and distinctive attribute.  Specifically, the systems 
represent an integration of a physical structure and a component that is conceptually and 
logically distinct from it.  This component is an automation and control subsystem.   
 
We press a button, turn a wheel, or push a pedal, and a complex system with hundreds 
of thousands of parts miraculously does the right thing (not always, of course, but the 
wonder is that the system works at all).  It is the automation and control subsystem that 
is responsible for this apparent miracle.  And note that the system’s functioning must be 
ensured under a variety of unpredictable environmental and external conditions, ranging 
from turbulence in flight to occupancy levels in a conference room. 
 
In virtually every case, the automation is hidden from view, so the fact that its presence 
is by and large unrecognized should elicit little surprise.  The parts that comprise it are 
often embedded within the physical structure and are often not apparent as separate 
from it.  Sensors, switches, wires, processors—these are not what we think of, or see, 
when we see a factory, even though no factory today could operate without them. 
 
A subtler problem is that automation and control has to do with information, not 
tangible, physical “stuff.”  When we marvel at a jet aircraft streaking across the sky, it’s 
the gleaming fuselage that catches our eye and imagination, not the behind-the-scenes 
millisecond-by-millisecond information processing and decision making that is 
ultimately responsible for the aircraft’s flight—and that typically occurs without any 
pilot input.  The story is similar across the technological spectrum. 
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2. Elements of the Control Loop 
 
2.1. “Plant” and “Controller” 
 
The distinction between the physical system and the automation and control element is 
captured in Figure 1, which introduces the shorthand terms plant and controller.  The 
automation component or controller obtains information about the state of the physical 
system through sensors that measure various properties of interest, such as 
temperatures, pressures, positions, velocities, and chemical composition.  And it 
influences the behavior of the physical system using actuators such as motors, pumps, 
valves, and switches.  Usually human operators interact with the controller to ensure 
that the behavior of the physical system is satisfactory.  The human operator obtains 
information about the physical system through displays associated with the controller, 
which also provides the means for the operator to directly effect any changes to the 
system’s operation. 
 
Much of the complexity that we intuitively associate with machines such as aircraft or 
chemical plants has to do with the coupling of the physical, chemical, or other 
phenomena that govern the operation of the machine (these, being prescribed by nature, 
we have no liberty to modify) and the dynamic actions that are taken by the automation 
system to influence the plant’s behavior.  The details of the plant vary widely across the 
range of complex engineering systems, but the principles and concepts involved in the 
automation and control of different plants are remarkably similar. 
 

 
 

Figure 1:  Plant and controller:  an integration that defines complex engineering 
systems. 

 
The schematic of Fig. 1 considerably simplifies reality.  Two particular simplifications 
are worth noting here.  First, the clean partition between the plant and the controller in 
the figure, although literally quite accurate, is complicated by the fact that both these 
components have complex, hierarchical structures.  Thus although at a high level we 
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can generally identify an information processing and algorithmic component that is 
separate from the physical structure, the latter itself is often composed of physical 
subsystems with associated subcontrollers.  This “loops within loops” hierarchy can be 
many levels deep.  Analogously, the concepts of “sensor” and “actuator” get abstracted 
as we move up the hierarchy. 
 
For example, physical sensors such as temperature transducers provide information 
directly to low-level controllers that may be responsible for maintaining the room 
temperature in a hotel by adjusting damper settings.  At the next level in the hierarchy, 
calculations based on temperate and humidity may provide a comfort measure that can 
be regulated through “setpoint” commands to low-level controllers.  Higher-level 
controllers may measure aggregate properties such as the cost of energy being 
consumed by the building.  Their actions, in a deregulated utility marketplace, may 
involve the rescheduling of “shiftable” loads such as laundry and maintenance 
operations or switching from purchased electricity to on-site microturbine generators. 
 
A second important simplification is the omission of the “environment” within which 
the system operates.  Variations in the environment affect the plant as disturbances (a 
term with a rather precise meaning in control engineering).  In many cases, automation 
would be trivial in the absence of disturbances; disturbance rejection is one of the 
principal functions of most control systems and often the reason for much of their 
sophistication.   
 
A typical example of a disturbance is a wind gust for an aircraft.  Similarly, a chemical 
plant is affected by ambient temperature variations since chemical and material 
properties are often temperature-sensitive.  Process plants such as oil refineries, 
chemical factories, or fossil-fuel power generators are exposed to the elements, and 
thunderstorms and lightning strikes can affect their operation.  Disturbances are caused 
not only by natural phenomena.  Variations in occupancy levels in a commercial 
building or in the manufactured raw materials for a factory must be accommodated for 
safe, reliable, and efficient operation. 
 
The extent of automation provided by any control system is “incomplete” in the sense 
that operators and other personnel are required to monitor and sometimes to take over 
control.  Process plant operators, cockpit crew in aircraft, air traffic controllers, facility 
management personnel, can all be thought of as “operators” in this general sense (as 
depicted in Fig. 1).  Information about the current state of the engineering system is 
conveyed to a human operator through displays that are part of the control system.   
Manually commanded changes are also effected through the control system.  The 
automation can enable the operator to directly modify the engineered system—to close a 
valve, for example, or to change the deflection angle of an aircraft wing flap.  In 
addition, the operator action may refer not to the plant but to the controller.  Commands 
to the controller can include set-point changes to adjust something like the desired flow 
rate for an intermediate product serving as input to a refinery distillation column, or 
mode switches to change from climb to cruise in a commercial airliner.  The automation 
system can also suggest actions for the operator to take, such as fault management 
recommendations for replacing or fixing components identified as likely to fail.   
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The role of the human operator is evolving as increasingly many functions related to the 
operation of engineering systems that used to be performed by her have become the 
control system’s responsibility and as new developments in the engineering systems 
themselves make their automation a more challenging task. Human-machine interaction 
is an integral facet of automation and control and will remain so for the foreseeable, and 
perhaps even conceivable, future. 
 
2.2. The Role of Automation 
 
Getting an aircraft to fly reliably from point A to point B, or producing gasoline of a 
required octane specification from raw crude, or maintaining temperature and humidity 
within comfortable ranges in a large hotel, would all have seemed incredible feats a 
century or so ago.  Today we give them hardly a second thought.  Familiarity masks the 
magnitude of the achievement. 
 
Whereas the engineering systems that are the beneficiaries of automation and control 
are all visible to us, the automation component weaves its wonders unobserved. Yet the 
cost, the performance, or even the very existence of the end product we take for granted 
would be problematical were it not for a controller. One gets reminders of the existence 
of the controller, and hints of its complexity (automation systems themselves are 
complex engineering systems in a sense), on occasion.  From a window seat on a 
commercial airliner encountering turbulence, for example, the subtle but effective 
movements of the wing flaps suggest that there’s more to comfortable and reliable flight 
than meets the passenger’s eye. 
 

 
 

Figure 2:  A schematic of a paper machine (top) showing some of the control equipment 
used to manufacture paper.  The photograph shows a view looking toward the first stage 

of a machine.  The machine shown is 200 meters long and the paper travels over 400 
meters.  (Figure courtesy of Greg Stewart, Honeywell Process Solutions.) 
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Fig. 2 illustrates a papermaking machine, a sophisticated, high-performance control 
system that is one of the unsung heroes of engineering.  A high-end machine is a $100 
million ticket item that extends well over the length of a football field and can produce 
over 100,000 tons of paper per year—that’s one ton every five minutes.  The paper is 
produced in a single, continuous sheet over ten meters wide that travels at over 100 
km/h (over 60 mph) and is ultimately wound on a roller for subsequent cutting and 
packaging. This throughput is accomplished despite the fact that the input to the paper 
machine is water and wood pulp slurry that is over 99% water whereas the output is a 
sheet of paper the thickness of which is uniform to within microns (thousandths of a 
millimeter).  The manufactured paper’s areal weight (weight per unit area usually in 
grams per square meter (gsm)), moisture content, and other parameters are also tightly 
regulated.  In order to achieve quality specifications and the rate of production, 
thousands of sensor readings and control actions are continuously being taken by the 
controller.  The automation and control system provides the mechanisms and the 
“intelligence” to ensure that the actions are the right ones in particular situations, 
automatically taking into account variations in the input, the wear and tear of the 
machinery equipment, ambient temperatures and pressures, the current state of the paper 
sheet, and other intrinsic and extrinsic factors. 

 
Given their performance, it should not occasion any surprise that automation and 
control systems are invariably specialized for the engineering systems they operate 
(typically with human supervision).  Yet there is much in common among the different 
applications. 

 
2.3. Sensing, Feedback, and Actuation 
 
It is a truism that “We can only control what we can measure.”  Without quantitative 
measurements of temperatures, pressures, positions, velocities, flows, chemical 
concentrations, reflected light, and innumerably many other parameters, automation 
would not only be difficult; it would be impossible.  Large industrial plants have 
thousands of sensors to ensure that the right measurements are available for monitoring 
and control. 
 
Traditionally, sensors have been used for basic physical properties such as temperatures, 
pressures, flows, levels, positions, forces, and accelerations, but with advances in 
microelectromechanical systems (MEMS) and nanotechnology new vistas for sensing 
are opening up.  For example, gas chromatographs (GCs) have been miniaturized to the 
point where they can be used online for detecting chemicals—potentially replacing the 
offline sample collection and lab analysis process required by today’s GC systems. 
 
The rapidly increasing quantity and variety of sensors are leading to the prospect of a 
“pervasive sensors” umbrella over oil refineries, commercial buildings, and the like.  
The parallel development of wireless communications is a key enabler in this trend—the 
largest cost of installing a sensor in a plant is usually the wiring. 
 
Even with advances in physical sensors, it will continue to be the case that we may want 
to monitor and control parameters that we cannot directly measure, because sensors for 
the parameter do not exist or they are infeasible to use because of cost or installation 
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difficulties.  In such cases we often employ estimation algorithms to infer the property 
from the data that can be directly measured.  Inferential sensors are even used for 
abstract properties such as occupant comfort in building control systems.  Indeed, the 
International Standards Organization has adopted a thermal comfort index standard 
(ISO 7730) that specifies how comfort can be estimated from parameters such as room 
temperature and humidity. 
 
The reason sensors and measurements are critical to control is that they provide 
feedback regarding the state of the plant to the controller.  Actions taken at any time can 
thereby be informed by and customized for how the plant is operating relative to our 
objectives for it.  A common feedback strategy is to compute the difference between 
what we want the plant’s output to be and what it is measured to be, and use an 
algorithm to calculate what change should be made to the plant in order to reduce the 
discrepancy.   
 
Calculating the optimal control action requires knowledge about how the plant will 
respond to different hypothetical actions.  How does the rate of a chemical reaction that 
takes two feed inputs and produces a third desirable chemical vary as the reaction vessel 
is heated or cooled?  How does a rudder movement affect an aircraft and how does this 
effect vary as a function of altitude and airspeed?  How long does it take an infrared 
actuator on a paper machine to have a noticeable drying effect on the paper sheet?  Not 
only do the answers to such questions need to be known, but the knowledge needs to be 
quantitatively precise.  It isn’t sufficient to assert that a rudder movement to the left will 
cause the aircraft to turn left; we need to know the probable motion over time of the 
aircraft.  The answers inevitably depend on the specifics of the application—which 
chemical and at what concentration?  What aircraft type and under what loading 
conditions?  Which paper machine, with what slurry concentration and what kind of 
wood pulp? 
 
This knowledge is expressed as mathematical models of plants.  Models come in 
various types and can be obtained in different ways.  They are also used in different 
ways.  Sometimes, a model is used in the design of the controller but is not explicitly 
present in it—the calculations the controller performs have been designed (through 
automated or manual means) using the model but there may not be any separate module 
in the control system that contains the model.  In other cases, the model is an explicit 
element of the controller and the controller’s calculations rely on the model for 
predicting the plant’s behavior to possible control actions.  Model-based controllers are 
in general capable of better performance—faster response, better disturbance rejection, 
less energy expenditure—than non-model-based ones, and the exponential growth in 
solid-state electronics has resulted in these more memory- and computation-expensive 
designs becoming popular for a wide variety of problems. 
 
Although feedback is often considered a prerequisite for control, not all control is 
feedback control.  Most advanced control strategies also have a feedforward component.  
This allows actuation commands to be computed in advance based on assumptions of 
how the plant will behave.  Feedback is necessary to ensure that correct responses are 
made to disturbances that arise unpredictably, but feedforward control, through its 
anticipatory mechanism, can improve the speed of operation of the plant. 
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Tolerating the uncertainties of the operating environment and the normal wear and tear 
of equipment is challenging enough, but in many cases we demand performance even 
under component failures and other faults.   
 
A small oil refinery may have over 5,000 valves.  The likelihood that they will all be 
functioning correctly at any moment in time is small, and yet the automation system 
must be able to manage the operation of the refinery at all times.  Analogously, all 
modern twin-engine commercial aircraft are capable of flying safely if one engine 
fails—but obviously the control strategy used is very different than for the nominal 
plant.  Fault management used to be largely a manual task, but it has steadily been 
automated and remains a high priority area for future automation developments. 
 
Control is ultimately about action—affecting changes to the plant that attempt to modify 
its behavior in accordance with the objectives of its operators and owners.  These 
changes are now computed by information processing algorithms, but they must be 
realized through physical devices, actuators.  
 
 Like sensors, actuators are becoming more sophisticated, with built-in calibration and 
diagnostic capabilities.  Miniaturization trends are making an impact here too, 
especially in cases where the systems under control are small scale:  computerized fuel 
injection in automobiles, LCD (liquid crystal display) projectors in conference rooms, 
biomedical implants in human patients, etc.  In more conventional domains for control, 
where large volumes or forces must be handled, miniaturization is less relevant—the 
size of a valve controlling flow to a tank in a chemical plant or of the rudder in an 
aircraft must continue to be commensurate with the scale of the system. 
 
3. Information Technology Elements of Automation 
 
The sensing-control-actuation loop has always been at the conceptual heart of all control 
systems.  When it comes to implementation, however, the information technology 
revolution has had a dramatic impact.  Below we discuss the role, and evolution thereof, 
of several IT-related elements in automation and control. 
 
- 
- 
- 
 

 
TO ACCESS ALL THE 22 PAGES OF THIS CHAPTER,  

Click here 
 

 
Bibliography 
 
C. Jorgensen, K. Wheeler, and S. Stepniewski, “Bioelectric Control of a 757 Class High Fidelity Aircraft 
Simulation,” Proc. of the World Automation Conference, June 11-16, Hawaii, 2000.  [Discusses NASA’s 
research on an EMG interface for a Boeing 757 aircraft simulator.] 

https://www.eolss.net/ebooklib/sc_cart.aspx?File=E6-43-37-00


UNESCO – 
EOLS

S

SAMPLE
 C

HAPTERS

CONTROL SYSTEMS, ROBOTICS, AND AUTOMATION – Vol.XXI - Elements of Automation and Control - Tariq Samad  
 
 

©Encyclopedia of Life Support Systems (EOLSS) 

Control Engineering, December 2001.  [Brief discussions on the use of wireless connectivity in control 
systems, in articles titled “Deploying wireless Ethernet,” “Wireless I/O systems aid diagnostics,” and 
“RFID gets the message,” all in this issue.] 

F.-L. Lian, J.R. Moyne, and D.M. Tilbury, “Performance Evaluation of Control Networks:  Ethernet, 
ControlNet, and DeviceNet,” IEEE Control Systems Magazine, vol. 21, no. 1, pp. 66-83, February 2001.  
[Source for the information in Table 1 plus detailed discussion and experimental comparison of different 
control networks.]  

IEEE Spectrum, October 2000.  [This issue of the magazine contains articles on miniaturized displays, 
wearable computers, and paperlike displays.] 

J.L. Rodengen, The Legend of Honeywell, Write Stuff Syndicate, 1995.  [First computer-based control 
system and discussion of other developments in automation and control at Honeywell International.] 

M. Ancevic, Intelligent building system for airport.  ASHRAE Journal, November 1997, pp. 31–35.  
[Describes the design and implementation of the Munich airport facility management system by 
Honeywell.] 

T. Samad (ed.),  Perspectives in Control Engineering:  Technologies, Applications, and New Directions.  
New York City:  IEEE Press, 2001.  [A collection of chapters with tutorial-level as well as advanced 
treatments of several technologies and applications related to control systems.]  

T. Samad and J. Weyracuh (eds.), Automation, Control and Complexity:  An Integrated View.  Chichester, 
U.K.:  John Wiley and Sons, 2000.  [A collection of chapters discussing new trends and research 
developments in automation systems as their application domains become increasingly more complex.] 

http://hrst.mit.edu/hrs/public.  [History of Recent Science and Technology Web site at MIT.  Discusses 
first aerospace fly-by-wire control system and also contains much other information that is useful and/or 
interesting.] 

 http://www.microcontroller.com.  [General information about microcontrollers, digital signal processors, 
and microcontroller signal processors.] 

www.wirelessethernet.org, www.bluetooth.org and www.wapforum.org.  [Up-to-date information about 
wireless Ethernet, Bluetooth, and WAP respectively] 
 
Biographical Sketch 
 
Tariq Samad is a Corporate Fellow with Honeywell Automation and Control Solutions.  He has been 
with various R&D organizations in Honeywell for 17 years, during which time he has been involved in a 
number of projects that have explored applications of intelligent systems and intelligent control 
technologies to domains such as autonomous aircraft, building and facility management, power system 
security, and process monitoring and control.  He was editor-in-chief of IEEE Control Systems Magazine.  
His recent publications include the edited volumes Automation, Control, and Complexity:  An Integrated 
View (Wiley), Perspectives in Control:  Technologies, Applications, New Directions (IEEE Press),  and 
Software-Enabled Control:  Information Technology for Dynamical Systems (Wiley).  He also holds 11 
patents.  Dr. Samad is the recipient of a Third Millennium Medal from IEEE, an Excellence Award for 
Technical Publications from the Society of Technical Communications, and a Distinguished Member 
Award from IEEE Control Systems Society, among other honors.  He has given plenary and keynote 
presentations at several international conferences and he was the Program Chair for the 2004 IEEE 
International Symposium on Intelligent Control, Taiwan.  Dr. Samad received a B.S. degree in 
Engineering and Applied Science from Yale University and M.S. and Ph.D. degrees in Electrical and 
Computer Engineering from Carnegie Mellon University. 
 
 


