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Summary 
 
Sensors and analyzers are a control system’s window to the world.  A sensor is defined 
as a device that converts a physical stimulus into a readable output, and the definition is 
illustrated with several examples of engineered and biological sensors.  The design of 
sensors is driven by desired improvements on one or more of surprisingly many 
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performance features and attributes:  signal-to-noise ratio, reliability, safety and intrinsic 
safety, accuracy, response time, dynamic range, cost, power consumption, size, 
electromagnetic interference immunity, etc.  Recent trends and developments in sensor 
technology include the increasing use of signal processing for compensation, typically 
used for reducing cross-sensitivity to secondary variables; multivariable inferential 
sensing, which allows sensing solutions to be developed for parameters that are 
infeasible to directly measure online; and self-checking and self-compensating sensors 
that enhance reliability and reduce maintenance costs.  
 
 The chapter also discusses biological sensors with specific reference to olfaction and 
chemical sensing; in these modalities, our best artificial sensors are no match for 
biology.  In conclusion, visions for improved safety and efficiency through sensor-
enabled automation in automobiles, commercial aircraft, health care, asset management, 
and other areas are outlined. 
 
An earlier version of this chapter appeared in Automation, Complexity and Control:  An 
Integrated View, T. Samad and J. Weyrauch, eds., 2000.  Portions © John Wiley & Sons 
Limited; reproduced with permission. 
 
1. Introduction 
 
Control is more than information processing; it implies direct interaction with the 
physical world. Control systems include sensors and actuators, the critical pieces needed 
to ensure that our automation systems can help us manage our activities and 
environments in desired ways. By extracting information from the physical world, 
sensors provide inputs to control and automation systems.  
 
We may label our times the Information Age, but it would be a mistake to believe that 
advances in automation and control are solely a matter of more complex software, Web-
enabled applications, and other developments in information technology. In particular, 
progress in control depends critically on advances in our capabilities for measuring and 
determining relevant aspects of the state of physical systems.  
 
Technologists tasked with automation and control of systems of ever-increasing levels 
of complexity, whether as designers, operators, or managers, or in other capacities, thus 
need to be familiar with sensor technology. The increasing sophistication of sensors and 
sensing systems, the considerations driving this sophistication, new sensors and uses of 
sensors in control systems, the increasing reliability of sensors, and the like are topics 
whose relevance today is not limited to sensor application specialists.  
 
Our objective in this chapter is to discuss sensors from these points of view. Our focus 
is on the role of sensors in control systems and the trends and outstanding needs therein. 
Since excellent reviews of recent sensor developments and current applications already 
exist, we give some selected examples of new sensor developments, without any claims 
at comprehensiveness. Rather, our goal is to point out the benefits of increased sensor 
sophistication as well as key approaches and areas where more understanding is needed. 
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In the following sections, we first offer a definition of a sensor along with several 
examples. Next, we outline the application of sensors in simple control systems and 
discuss some of the important attributes of sensors, followed by reviews of recent 
developments in sensor systems, including sensor compensation and inferential sensing. 
We then focus on the sensing capabilities of biological systems and lessons we can hope 
to draw from them. We conclude by presenting some visions for how control and 
automation can help realize a safer, more productive, and more prosperous future and 
the role that sensors will need to play. 
 
2. Sensor Fundamentals and Classifications 
 
We can define ‘sensor’ as a device that converts a physical stimulus or input into a 
readable output, which today would preferably be electronic, but which can also be 
communicated via other means, such as visual and acoustic. As perhaps the simplest 
example, consider the sensor on a keyboard switch actuator – which provides a signal 
when the associated key is pressed. The keyboard switch sensor has several desirable 
features. It is inexpensive, it has a high signal-to-noise ratio (its on/off impedance ratio), 
it is compact, and it has low power consumption. Its reliability and ability to operate 
over a wide range of environmental conditions are also exemplary.  
 
Unlike most sensors, a keyboard switch sensor lacks an analog input range, and its 
output is binary. Temperature, pressure, and flow sensors are more typical examples. In 
these cases, the output is not a binary quantity but a value that is sensitive to a range of 
those physical conditions. Figure 1 shows an example of a state-of-the-art sensor, in this 
case, a mass flow sensor. As evidenced by this example, many advanced sensors today 
are microscopic, microstructure devices that leverage the economies of scale and the 
fabrication technologies of semiconductor manufacturing. 
 

 
 

Figure 1:  A micromachined mass flow sensor die (not packaged) 
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A semiconductor sensor that provides a wealth of information is the silicon photodiode. 
A CCD array of such devices typically generates on the order of 109 bits/second. Yet 
another example of a near-ideal sensor, it is a very simple device, easily fabricated into 
arrays with modern solid-state technology, with a very wide dynamic range (the ratio of 
the maximum to the minimum detectable photon intensity). One characteristic that is 
almost uniquely ideal is its stability. It has essentially no baseline drift and excellent 
scale factor stability.  
 
The reasons for these ideal characteristics lie in the physics of the device. It is basically 
an energy converter – changing light energy (photons) into electrical energy (electrons 
in higher energy states that can generate current or voltage). When there are no 
incoming photons, there is no photocurrent – hence the baseline cannot drift. The 
quantum efficiency is close to unity (meaning one electron per photon) – hence the scale 
factor (photocurrent divided by light intensity) is constant and stable over many orders 
of magnitude. A well-designed photodiode is linear over eight orders of magnitude in 
intensity and provides a primary standard for light intensity measurement within 
defined wavelength limits. It is not surprising that photodiodes are at the heart of CCD 
cameras and are ubiquitous in video information systems. 
 
Still other types of sensors operate on chemical principles and may consist of single 
molecules. For example, a phenolphthalein molecule (the dye in litmus paper) signals a 
change in hydrogen ion concentration (i.e., pH value) by changing its color. Similarly, a 
biosensor may be based on a molecule that interacts with a biological analyte to produce 
a signal we can pick up with our senses. 
 
The generic block diagram for a sensor shown in Figure 2 highlights the role of a sensor 
as an interface between a control system and the physical world. The detector or 
transducer converts a physical or chemical phenomenon into (typically) an electrical 
signal. The signal processor performs one or more of various mathematical operations 
on the sensed value, such as amplification, rectification, demodulation, digitizing, or 
filtering. The measured and processed value is communicated to other subsystems (e.g., 
via a compatible electrical signal) or to a human (e.g., via a display). The sophistication 
of these functions and of the calibration process varies widely. 
 
The term smart sensor implies that some degree of signal conditioning is included in the 
same package as the sensor. On the more sophisticated end of the spectrum, the ‘sensor’ 
unit can include devices or systems with elaborate signal processing, displays, and 
diagnostic or self-calibration features. Such devices are often referred to as 
‘instruments’, ‘analyzers’, or ‘transmitters’ (this last term is common in the process 
industries), usage that emphasizes that the transducer is but one part of a sensing system 
in the context of large-scale automation. In this chapter, we will not, however, be 
making hard distinctions between sensor categories. 
 
There are many ways to list or classify kinds of sensors. Classifications can be found in 
the literature based on the form of energy being transduced and on whether the 
transduction mechanism is self-generating (like a thermocouple or a piezoelectric 
material) or a modulating mechanism (like a thermistor or a piezoresistor). Table 1 
shows some sensor examples based on a simple classification criterion: human-made 
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versus biological. Either type may be used in an automation system – human operators 
can be considered part of the system.  
 

Engineered sensors Biological sensors 
Sensor Sensed quantity Sensor Sensed quantity 
Photodiode Light intensity Retina Light intensity 
Psychrometer Humidity Cochlea Sound 
Barometer  Pressure  Ear canal Level, rotation 
Thermometer Temperature Taste bud Chemical 

composition 
Phenolphthalein  pH Skin  Temperature 
Timer Time Skin and hair Air flow 
Odometer Distance (inferred) Olfactory cells Gas composition 

 
Table 1:  Examples of engineered and biological sensors 

 
A classification focusing on the physical effects that sensors can respond to is the basis 
of Table 2. One may argue about the classification of some examples, in view of their 
principle of operation being based on mixed effects. For example, the Hall effect 
depends on an electric current as well as a magnetic field. 
 

 
 

Figure 2:  Sensor block diagram 
 

Sensing Principle Examples 
Mechanical motion 
(including mechanical 
resonance)  

Pendulum-clock, quartz clock, spring balance, odometer, 
piezoresistive pressure sensor, accelerometer, gyro 

Thermal (incl. temperature 
differences) 

Thermometer, thermocouple, thermistor, thermal conductivity 
detector, transistor built-in voltage, air flow sensors 

Optical energy (photons) Photodiode, CCD camera, Geiger-Mueller tube, color sensor, 
turbidity sensor,  

Magnetic field Compass, Hall-effect, magnetoresistance, inductive proximity 
sensor 

Electric field Electrostatic voltmeter, field-effect transistor 
 

Table 2:  Classification of sensors based on their sensing principle, with examples 
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3. Sensors in Control Systems 
 
The role of a sensor in a simple automation system is depicted in Figure 3. The 
detection and measurement of some physical effect provides information to the control 
system regarding a related property of the system under control, which we are interested 
in regulating to within some ‘set point’ range.  
 
The controller outputs a command to an actuator (a valve, for example) to correct for 
measured deviations from the set point, and the control loop is thereby closed. 
 
Because of the simplicity of the control system example of Figure 3, it represents a fair 
number of practical control systems. In especially simple systems, a distinct controller 
may not be immediately evident. For example, the ‘Honeywell Round’ thermostat 
contains a bimetal strip as an analog sensing mechanism that responds to temperature, 
and the switch attached to it serves as the actuator.  
 
This integration of sensor and actuator turns a furnace or other space conditioning 
device on or off, depending on whether the room temperature is within the set-point 
differential. 
 
In general, however, the trend is to incorporate more, not less, information processing 
with the sensor. The increasing complexity of sensors is in part a consequence of this 
trend. In many cases, the information processing is being incorporated within the sensor 
device, blurring the distinction between transducer and processor, and between sensor 
and instrument. 
 

 
 

Figure 3:  Example of a simple control system 
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