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Section 1 of this article provides an introduction to the conceptual origins of PLCs as a 
significant class of widely-used industrial controllers employed in process automation, 
whilst Section 2 discusses some decisive historical aspects of PLC evolution. 
 
Section 3 focuses on graphic programming languages for PLCs, the emphasis being on 
the latest standard IEC 6 1131-3. Acceptance of special features by PLC programmers 
and engineers is discussed from the aspect of understandability. A special subsection 
deals with real-time multi-tasking, including special topics, such as for example online 
configuration and SW/HW-in-the-loop co-simulation. The in-depth study finishes with 
PLC SW- and HW-architectures used in professional practice. The paper concludes with 
a discussion on future trends and perspectives of PLC software, highlighting fault-
tolerance and safety. 
 
1. Introduction 
 
Originally, programmable logic controllers (PLCs) were specialized computers for the 
mapping of hardware relay-logic to software in order to save costs and reduce necessary 
efforts for modification and maintenance of hardware-logic. After this concept had 
gained broad acceptance PLCs became soon one of the most commonly used types of 
automation elements in industry. The main reason behind this was the high acceptance 
by control engineers who could continue to use their relay-logic designs using a graphic 
programming language called Ladder Diagram (LD). Figure 1 illustrates the mapping of 
a hard-wired relay-logic (a) to its LD-counterpart which is based on the related 
connections of switches (A,B,C) and a coil (D) to digital inputs and an output, using 
their physical representations %IX1, %IX2, %IX3 and %QX1, respectively (b). In (c) 
the LD-diagram equivalent to the logic (a) is given with standardized symbols of IEC 
61131-3.  

 
 

Figure 1. Ladder Diagram equivalent (c) to a given hard-wired relay-logic (a) using a 
PLC and its digital I/O (b)  
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The only drawback was that the inputs and outputs of the software-logic could no longer 
be simultaneously checked and adjusted, but only sequentially “as fast as possible”, 
because of the finite computing time of the PLC. The consistency of PLC digital input 
signals during a computation cycle had to be guaranteed by freezing their values in a 
process-map and by simultaneously updating the PLC output-signals, at the beginning 
and at the end of each new cycle, respectively. This basic permanent cyclic principle of 
digital signal processing (see Figure 2) has been used in PLCs up to now, and the 
increasing efficiency of microprocessors resulted for a long time mainly in the ability of 
computing more logic in the same cycle time. 
 
It is only since the advent of the first international standard IEC 1131-3 for 
programmable controller languages in 1993 that the introduction of modern real-time 
programming principles has been discussed with growing interest also with respect to 
PLC-software. Although a first step towards industrial application was made in this 
direction by adding parallel functionality to PLCs for feedback-control, the concurrent 
task execution of feedback and sequential control tasks, which is common practice with 
embedded micro-computers and is a forced trend with embedded PCs, did not however 
have any influence on PLC software design. Therefore, PLC efficiency improvements 
were achieved essentially only via the hardware. 
 

 
 

Figure 2. Permanent cyclic execution of a PLC controller task 
 
On the other hand, the range of problems solvable by PLCs increased significantly by 
extending the PLC software to include additional graphic languages, e.g., Sequential 
Function Chart (SFC) and Function Block Diagram (FBD) for sequential and feedback 
control, respectively. The graphic languages once again play a decisive role in the high 
acceptance of PLCs, however the textual languages ST and IL are also often used. The 
introduction of the IEC 1131-3 standard resulted once again in an expected "acceptance 
jump" by PLC engineers and programmers due the significant savings in training which 
were achieved by unifying the existing proprietary industrial language dialects of 
different PLC manufacturers. 
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Apart from conventional permanent cyclic task execution, this standard introduced, for 
the first time, concurrent task execution in PLCs. Although the latter is professional 
practice in the field of micro computers and industrial PCs (IPCs), there is up to now 
only small acceptance of this feature by PLC engineers. This is at least partly due to the 
complexity of the IEC 6 1131-3 task model. On the other hand however, as known from 
problem-oriented real-time languages such as PEARL 90, it can be shown that 
conceptual simplification of this task model is possible, resulting in easier 
understanding. Simplification is also required in the field of safe real-time software. 
 
Besides specialized PLC systems, the advantages of graphic configuration of real-time 
software over conventional real-time programming are also available for a broad 
spectrum of micro- computers and IPCs known as (embedded) Software PLCs. The 
communication between different embedded PLCs in distributed automation systems, 
e.g., the mechatronic wheel drives of heavy duty off-road vehicles (e.g., VTT), can also 
be graphically configured with respect to IEC 61131-5. Communication protocols can 
also be used for synchronisation of tasks designed graphically as FBD. 
 
In addition to the graphic configuration of conventional controllers in FBD-language 
like PID (see PID-control), self-tuning controllers (see Figure 3) (see Self-tuning 
Control) and fuzzy controllers (see Figure 4) (see Fuzzy Control Systems) are also easily 
configurable. 
 

 
 

Figure 3. FBD of a self-tuning controller (PRG-CFC Window) scheduled as a 500 ms 
periodic task of priority 15 (Task Configuration Window) in a CoDeSys system 

 
This is of special interest because of the growing importance of the configuration of 
real-time software with respect to certification. The verifiability of real-time SW by 
inspection is, here, a necessary pre-condition, in particular with respect to the demand 
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for the highest safety integrity levels. 
 
2. Historical Aspects 
 
Up to the sixties, automation in automotive industries was based almost solely on 
hardware relay-logic for sequential control of production processes. Therefore, each 
change of design resulted in an expensive and time-consuming implementation. It was 
this situation that, in 1968, led to the introduction of the concept of a Programmable 
Logic Controller by Richard E. Morley of Bedford Associates, a manufacturer of 
industrial controllers. In this context, Morley later on founded the company Modicon 
(Modular Industrial Controllers).  
 
The first transistor-based PLC implementation was delivered to General Motors (GM) 
already in the following year. Nevertheless, it took about ten more years, i.e., up to 
1977, until the first microprocessor-based PLC was introduced. However, from this time 
on, the number of PLCs in the chemical industry, for example, grew almost tenfold 
within five years. A further indicator of significance of PLCs for industrial production is 
the fact that there were 150 producers of PLCs in 1989.  
 
These facts underline the necessity for standardising PLC programming languages, 
which had already been anticipated ten years previously when the IEC established the 
working group WG 7 for PLC standardisation in 1979. It took, though, until 1993 for 
the WG 7 activities to result in the International Standard (IS) IEC 1131-3 (later on IEC 
61131-3 using a world-wide numbering system). Meanwhile there has been a 
Committee Draft for Vote (CDV) of the Second Edition of IEC 61131-3, which has 
become International Standard in 2001. 
 
PLCs comprise a broad spectrum of programmable controllers ranging from large and 
medium size down to micro size PLCs, the latter being preferred for use as embedded 
components in field-bus oriented automation systems. 
 
The current price for micro PLCs is below US$500, and the price/performance ratio 
trend is downwards. Besides proprietary hardware PLCs, the advent of the IEC 6 1131-
3 standard promoted the break-through of so-called Software PLCs, i.e., automation 
components with PLC functionality based on standard hardware like PCs or other 
controller hardware. 
 
3. PLC Programming Languages 
 
3.6. Importance 
 
The conceptual idea of PLCs implies that PLC programming languages play a particular 
role for the successful PLC application. Furthermore, besides the importance of PLCs 
for low cost development and modification of sequential controllers, the standard 
promotes the introduction of modern real-time programming principles in PLC 
programming for the first time. Nevertheless, low acceptance of these new features by 
PLC programmers and engineers raises questions to be discussed which are also 
important with respect to the increasing demand for SW-safety and SW-certifiability by 
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institutions such as, e.g., the German TÜV (society responsible for monitoring 
standards).  
 
3.7. Extent of Conformity 
 
The standard IEC 6 1131 introduces two textual and three graphic programming 
languages. The textual programming languages, being conventionally represented by 
the Instruction Language (IL) which is also known as the "assembler language of 
PLCs", have been complemented by the higher-level programming language Structured 
Text (ST).  
 
On the other hand, the classical graphic language Ladder Diagram (LD) has been 
complemented by the languages Function Block Diagram (FBD) and Sequential 
Function Chart (SFC). The certification of the extent of conformity of programming 
languages of proprietary PLCs with the standard IEC 61131-3 is one of the areas of 
competence of PLCopen, i.e., TC 3. The members of this organisation comprise PLC 
and SW manufacturers, TÜV and, recently, also educational institutes.  
 
Their aim is to promote the standard and define recommendations for its use, e.g., for a 
safe language subset (TC5). In the following, FBD and SFC graphic languages will be 
discussed in further detail, due to their particular importance and impact on PLC 
programming.  
 
Graphic languages are distinguished from textual languages by their higher 
transparency, consequently making them easier to be understood by a broad spectrum of 
industrial staff, thus achieving one of the main objectives of the IEC 6 1131 standard. 
This is also a fundamental aspect for safety-oriented applications (see Section 5: Future 
Trends and Perspectives). 
 
3.8.Function Block Diagram (FBD) Language 
 
3.8.1. Features 
 
In the case of FBD-language, function-blocks (FB) and functions, which together with 
programs form the so-called program organisation units (POU), are placed as nodes at 
the desired positions of the respective window. Then they are parameterised and 
connected by lines, i.e. connection configured. FBDs are, to a large extent, verifiable by 
inspection, assuming correctness of FBs and functions themselves.  
 
The verification of FBs is facilitated by using high-level languages for their design, e.g. 
by PLC language ST. If POUs are of low complexity, their formal verification can also 
be occasionally taken into account. FBs of higher complexity can be created as "derived 
FBs", i.e. as FBDs from FBs of lower complexity, e.g., in the case of FBs for fuzzy 
control (see Figure 4) (see Fuzzy Control Systems). 
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Figure 4. FBD of a fuzzy-controller (top window) including a FB of type FUZ_PD 
(bottom window) as a "derived FB" 

 
If matrix-rule FBs (M_RULE) of appropriate dimensions are introduced, configuration 
of fuzzy rule conclusions can be mapped (even online) to parameterisation. If 
FUZ(zification), M(atrix)_RULE and DFUZ(zification) are used as basic FBs and if 
connections and problem parameters are correct, the derived FB FUZ_PD approaches 
(in the sense of cause-effect diagrams) safety-integrity level 4 (SIL 4), as defined in the 
standard IEC 6 1508. 
 
3.8.2. Function-Blocks as Objects 
 
FBs can be interpreted as SW-ICs, which can be connected via inputs and outputs 
similarly to HW-ICs. As opposed to HW-ICs, it makes sense in SW to create FB-
instances from FB-classes, i.e., abstract data-types, which is a basic idea of object 
orientation. Implicitly, as introduced in IEC 6 1131, object orientation is also the 
background of FBs and, even more, of tasks. New FB-classes can be defined in ST. The 
AD_CAN class definition for an I/O-FB for the fieldbus (see Bus Systems) connection 
with a CAN-based sensor, e.g., reads 
 
FUNCTION_BLOCK  AD_CAN 
. . .  
END_FUNCTION_BLOCK 
 
It should be pointed out that the more complete and mnemonically better keywords 
 
 
FUNCTION_BLOCK_CLASS  AD_CAN 
. . .  
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END_FUNCTION_BLOCK_CLASS 
 
have not been introduced. This may be to avoid the explicit introduction of object-
methods in order to ease acceptance by PLC programmers. However on the other hand, 
due to the absence of explicit pointers in ST, FBs cannot link themselves via input 
pointers to the output of a connected FB. Instead, the information exchange between 
FBs has to be organized explicitly by additional instructions between their respective 
FB-method calls, or by respective parameter lists of these methods, circumventing the 
OO principle of data encapsulation. 
 
The explicit call of the FB-procedure as an object-method is, furthermore, simplified by 
using the FB-class name itself (implicitly) also as method name, so that a program 
segment for executing the FB RLS_1 from Figure 3, e.g., reads in  
 
OO as 
 
CALL  RLS_1.RLS ; 
 
and   
 
ST(-oriented) as 
 
RLS_1.y : = ADC_1.out ; 
 
RLS_1.u : = PID_1.u ; 
 
CALL  RLS_1 ; 
 
or as 
 
CALL RLS_1(y:=ADC_1.out; u:=PID_1.u); 
 
3.8.3. Online Parameterisation  
 
The number of additional instructions of the ST-program is furthermore increased by 
the parameter-input values. This increases not only the complexity of the respective ST-
program, but has the disadvantage that a true online FB parameterisation needs the 
introduction of respective global variables. This could also be made implicitly possible 
by complementing each parameter-input by a respective parameter-output, which will 
be menu driven accessible for parameterisation. On default initialisation, each 
parameter-input pointer points to the respective parameter output. These implicit 
parameter-input connections have only to be changed if they are to be explicitly 
connected with other FBs, e.g., in the case of self-tuning control (see Figure 3). This 
particular design leads to, especially in the case of FBs with a large number of 
parameters, a significant simplification, e.g., for FBs of FUZ and DFUZ class with 
respect to the parameterisation of membership functions defining fuzzy sets. Further 
consequences of the demand for FB-implementation in a pointer-free programming 
language will be discussed later in the context of tasks. 
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